Главное отличие автоматической системы управления от автоматизированной. Реферат: Терминология теории систем (автоматизированные и автоматические системы)

Понятие автоматизированных систем.

  1. Чем отличаются автоматизированные системы от систем автоматического управления.
  2. Приведите примеры автоматизированных систем.
  3. Что собой представляют системы автоматизированного проектирования?
  4. Приведите примеры справочно-правовых систем.
  5. Структура автоматизированной системы пенсионного учета.
  6. Структура автоматизированной системы налогового учета.
  7. Что собой представляет электронный документооборот.
  8. Области применения экспертных систем.
  9. Что собой представляют автоматические обучающие системы?

Начертательная геометрия, изучаемая студентами заочной формы обучения в первом семестре, является первой частью дисциплины «Инженерная графика» и её теоретической базой.

Данное учебно-методическое пособие посвящено именно этой части дисциплины. Вторая её часть будет отражена в последующих работах.

При изучении курса необходимо ознакомиться с программой, приобрести учебную литературу и тщательно продумать календарный план самостоятельной работы, согласуя его с учебным графиком и и планами по другим учебным дисциплинам первого курса. В этом плане начертательной геометрии следует уделить особое место, учитывая, что наряду с изучением теории необходимо ознакомиться с решением типовых задач каждой темы курса и выполнить контрольные работы.

Цели и задачи изучения дисциплины – уметь точно и аккуратно выполнять графические построения при решении конкретных графических задач. Правильно построенные самостоятельные занятия по начертательной геометрии разрешат трудности в изучении этой дисциплины и научат студента представлять всевозможные сочетания геометрических форм в пространстве. Начертательная геометрия способствует развитию пространственного воображения, умению «читать» чертежи, с помощью чертежа передавать свои мысли и правильно понимать мысли другого, что крайне необходимо инженеру.

При изучении начертательной геометрии следует придерживаться общих указаний:

1) Начертательную геометрию нужно изучать последовательно и систематически.

2) В начертательной геометрии следует избегать механического запоминания теорем, формулировок, решений задач. Такое запоминание непрочно. Студент должен разобраться в теоретическом материале и уметь применить его как общую схему к решению конкретных задач. Свои знания надо проверить ответами на вопросы включённых в это пособие контрольно-измерительных материалов и решением задач.

4) В курсе начертательной геометрии решению задач должно быть уделено особое внимание. Решение задач является наилучшим средством более глубокого постижения положений теории. Прежде, чем приступить к решению задачи, надо понять её условие и чётко представить себе схему решения.

5) В начальной стадии изучения курса начертательной геометрии полезно прибегать к моделированию изучаемых геометрических форм и их сочетаний. Значительную помощь оказывают зарисовки воображаемых моделей, а также их простейшие макеты.

Системы несвязанного регулирования.

Структурная схема системы представлена на рис. 1.32. Выведем передаточную функцию эквивалентного объекта в одноконтурной АСР с регулятором R 1 . Как видно из рис. 1.33, а, такой объект состоит из основного канала регулирования и связанной с ним параллельно сложной системы, включающей второй замкнутый контур регулирования и два перекрестных канала объекта.

Рис. 1.33. Преобразование системы регулирования двух координат к эквивалентным одноконтурным АСР: эквивалентный объект для первого регулятора; б– эквивалентный объект для второго регулятора

Рис. 1.34. Амплитудно-частотные характеристики одноконтурных АСР при отсутствии перекрестных связей в объекте

Передаточная функция эквивалентного объекта имеет вид:

Второе слагаемое в правой части уравнения (1.36) отражает влияние второго контура регулирования на рассматриваемую систему и по существу является корректирующей поправкой к передаточной функции прямого канала.


Различают автоматические и автоматизированные системы управления. В отличии от автоматических систем, в которых управление осуществляется без участия человека, в автоматизированных системах часть функций управления выполняет человеком, другая часть – автоматическими устройствами. В автоматизированных системах управления (АСУ) с помощью вычислительной техники сбора, анализа, регистрации информации, а также ее преобразование для выполнения отдельных операций принятия решений. Для реализации этих функций используются экономико-математические методы и модели, позволяющие получить оптимальное или близкое к оптимальному решение. Таким образом, АСУ – это человеко-машинная система, использующая экономико-математические методы, средства электронно-вычислительной техники для отыскания и реализации наиболее эффективного управления

Наиболее распространенными признаками классификации АСУ являются тип объекта управления, выполняемые функции и назначение, выходные результаты и др.

По типу объекта управления различают АСУ предприятием, объединением, отраслью, народным хозяйством. Можно выделить территориальные АСУ (АСУ городом, АСУ регионом, АСУ республикой).

По назначению принято различать промышленные, оборонные, коммерческие, финансово-экономические и другие АСУ

По выполняемым функциям выделяют административно-организационные АСУ, технологические, интегральные.

По выходным результатам различают информационно-справочные, информационно-советующие и информационно-управляющие АСУ.

По типу производства различают АСУП для непрерывных, дискретных и дискретно-непрерывных производств.


В составе АСУП принято выделять функциональную и обеспечивающую части .

Функциональная часть подразделяется на подсистемы, выполняющие основные функции управления предприятием. Необходимость выделения функциональных подсистем объясняется сложностью управления современным мероприятием. Обеспечивающая часть представляет собой комплекс средств и методов, объединенных в соответствии с их спецификой и обеспечивающих решение задач во всех функциональных подсистемах АСУП. Выделяют организационное, информационное, техническое, математическое и программное, лингвистическое, правовое и эргономическое обеспечение АСУП.

Организационное обеспечение – это совокупность методов и средств технико-экономического анализа системы управления, выбора и постановки задач организационного, организации производства и управления в условиях АСУП.

Информационное обеспечение представляет собой совокупность динамической информационной модели предприятия и средств ее формирования и ведения (поддержание адекватности модели и объекта).

Техническое обеспечение АСУП – это комплекс технических средств, обеспечивающих функционирование АСУП.

Математическое и программное обеспечение представляет собой совокупность алгоритмов и программ, реализующих функциональные и обеспечивающие задачи АСУП.

Лингвистическое обеспечение – это языковые средства (языки программирования, описания объектов и задач управления, общения с ЭВМ и т.д.), используемые на различных этапах создания и функционирования АСУП.

Правовое обеспечение представляет совокупность руководящих материалов и нормативов, регламентирующих порядок разработки, внедрения и функционирования АСУП, статус АСУП в отрасли, функции отдельных звеньев и организаций, порядок формирования и использования информации в системе. Кроме того, правовое обеспечение регламентирует права, обязанности и ответственность персонала АСУП.

Эргономическое обеспечение – это совокупность методов и средств, позволяющих повысить эффективность деятельности человека в АСУП.

Иерархия.

Структуры сложных систем управления, как правило, строятся с использованием иерархического и функциональных принципов выделения подсистем.

Первый (нижний) уровень иерархии состоит из множества систем управления отдельными технологическими операциями. Цель управления на этом уровне обычно является выбор и поддержание заданных режимов выполнения технологических операций. Здесь управление сводится к контролю параметров технологических режимов и к воздействию непосредственно на технологическую операцию.

Второй (следующий) уровень иерархии включает системы управления производственными участками и технологическими линиями. Основная цель управления – выбор и поддержание режимов совместного функционирования агрегатов станков и оборудования. На этом уровне производится корректировка параметров каждой операции технологического процесса в зависимости от случайного и вынужденного изменения режимов других.

Совокупность систем упрвления первого и второго уровней будет называться системой упрвления технологическими процессами (СУТП).

Третий уровень иерархии составляют системы управления цехами. Цель управления цехом – организация выпуска заданного количества изделий конкретной номенклатуры с требуемым качеством и наименьшими затратами. Для реализации такой цели в процессе управления необходимо выполнять функции организационно и экономического характера.

Объектом управления на четвертом уровне иерархии является непосредственно предприятие в целом. Цель управления – организация совместного функционирования цехов для выпуска готовой продукции при заданных технико-экономических показателях. Совокупность систем управления третьего и четвертого уровней называют системой управления предприятием (СУП).

В Автоматический или автоматизированный? Некоторые вопросы видеофиксации.

В своем предыдущем посте я уже затрагивал тему автоматической видеофиксации нарушений ПДД и "писем счастья". Сейчас хотелось бы разобраться с такой "фундаментальной" проблемой, как "относимость" тех или иных устройств, применяемых ГИБДД России, к "работающим в автоматическом режиме специальными техническим средствам, имеющим функции фото- и киносъемки, видеозаписи, или средствами фото- и киносъемки, видеозаписи".
Ведь от того, является ли режим работы прибора автоматическим , напрямую зависит возможность и законность производства по делу об административном правонарушении в особом порядке - без составления протокола и участия лица, с существенным изъятием из принципа презумпции невиновности - наложением на лицо "обязанности" доказывать свою невиновность (так называемая "презумпция виновности" - сфотографировали значит виновен, см. примечание к ст. 1.5 КоАП РФ).
В действующем законодательстве определения понятия "автоматический режим" не существует, поэтому "лезем" в толковые словари и специальную литературу. Где без труда находим, что "автоматический " значит функционирующей без вмешательства человека в соответствии с заранее заданным алгоритмом. Именно исключение человеческого фактора является главной особенностью применения средств работающих в автоматическом режиме. Не случайно Правовое управление Государственной Думы РФ отметило: «С учетом предназначения специальных технических средств, которое им отводится проектом и, прежде всего, как средств фиксации правонарушений, считаем необходимым установить в действующем законодательстве требования, которым они должны соответствовать, с тем, чтобы исключить возможность несанкционированного к ним доступа, ошибок при фиксации дорожно-транспортного происшествия и т.д., тем самым, сократив возможность привлечения к административной ответственности невиновных лиц».
Вроде бы все понятно, но если посмотреть специальную литературу более внимательно, то сразу можно найти еще одно понятие - "автоматизированный". Читаем: "в отличие от термина "автоматический", "автоматизированный " режим работы подчёркивает сохранение за человеком-оператором некоторых функций , либо наиболее общего, целеполагающего характера, либо не поддающихся автоматизации". Чувствуете разницу? Все просто: автоматический - без участия человека, автоматизированный - с его участием.
А теперь, собственно, рассмотрим некоторые приборчики.
Например, широко распространенный "КРИС-П". Берем описание с сайта-производителя . Читаем инструкцию. Прибор сам фиксирует скорость, сам распознает номера, сам сохраняет информацию на флешку или может передавать ее на мобильный пост - ноутбук. Автоматический вроде - есть алгоритм он и работает... Читаем инструкцию дальше... Кто вводит в него данные о месте установки и скоростном режиме? Кто ставит его на дорогу? ЧЕЛОВЕК. Координаты не приходят автоматически со спутников ГЛОНАСС или GPS. Они приходят "автоматизированно" с мобильного поста - ноутбука. Передвинь хулиганы прибор за границу населенного пункта, или за зону с действующим ограничением скорости, он также будет автоматически работать, но работать уже будет неправильно. Тут же давайте предположим, что в нем был бы встроен ГЛОНАСС- или GPS- приемник и заложена база данных о действующих скоростных режимах для конкретных участков дорог, ну наверное еще и автоматическая система контроля правильности установки... В этом случае все было бы на 100% автоматическое и не вызывало бы никаких сомнений: поставили и он сам начал работу. В существующем же виде прибор целесообразно использовать в связке с полицейским и обычным порядком привлечения к ответственности "любителей погонять" - с остановкой ТС и последующим общением с инспектором (которое, как мне кажется, оказывает лучшее влияние, чем черно-белое письмо в почтовом ящике). В связке с ним "КРИС-П" - это нужный, надежный и вполне объективный друг.
С "КРИС-С" - стационарным прибором, все по другому, хотя настраивают его также как и КРИС-П. Лишь с учетом конструкции этот прибор полностью автомат: его не передвинешь и легко проверишь как он установлен. Он висит всегда на одном месте. Скоростной режим один. . Ничего тут не скажешь.
Ну и пару слов о приборе "Паркон".

Читаем принцип работы: В процессе подготовки видеофиксатора к работе создается список участков дорог с запрещенной остановкой и стоянкой для последующей автоматизированной обработки зафиксированных нарушений правил парковки. Не автоматической . К нему подключается и ГЛОНАСС и GPS, он сам снимает, но его возят. По определению он уже в связке с инспектором ДПС.
Вообще с нарушениями скоростного режима и правил парковки бороться надо. Бороться надо с любыми нарушениями закона.И научно-технический прогресс должен быть помощником. Однако следует помнить, что в основе работы любого прибора в первую должны лежать принципы законности, достоверности и проверяемости.

Автоматизированные системы управления АСУ АСУ применяются в различных отраслях промышленности энергетике транспорте и т. в должности директора Центрального научноисследовательского института технического управления ЦНИИТУ являясь также членом коллегии Министерства приборостроения СССР он руководил внедрением первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PRакций по внедрению дорогостоящих ЭВМ вместо создания настоящих АСУ для повышения...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


АВТОМАТИЗИРОВАННЫЕ И АВТОМАТИЧЕСКИЕ СИСТЕМЫ УПРАВЛЕНИЯ

Автоматизированная система управления (АСУ) и система автомат и ческого управления (САУ) — комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках техн о логического процесса, производства, предприятия.

Автоматизированные системы управления (АСУ)

АСУ применяются в различных отраслях промышленности, энергетике, транспорте и т. п. Термин автоматизированная, в отличие от термина автоматич е ская подчёркивает сохранение за человеком-оператором некоторых функций, л и бо наиболее общего, целеполагающего характера, либо не поддающихся автом а тизации. АСУ с Системой поддержки принятия решений (СППР), являются осно в ным инструментом повышения обоснованности управленческих решений.

Создателем первых АСУ в СССР является доктор экономических наук, профессор, член-корреспондент Национальной академии наук Белоруссии, осн о воположник научной школы стратегического планирования Николай Иванович Ведута (1913—1998). В 1962—1967 гг. в должности директора Центрального научно-исследовательского института технического управления (ЦНИИТУ), являясь также членом коллегии Министерства приборостроения СССР, он руководил внедрен и ем первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PR-акций по внедрению дорогостоящих ЭВМ, вместо создания настоящих АСУ для повышения эффективности управления производством.

Важнейшая задача АСУ - повышение эффективности управления объектом на основе роста производительности труда и совершенствования методов план и рования процесса управления. Различают АСУ объекты (технологическими пр о цессами-АСУТП, предприятием-АСУП, отраслью-ОАСУ) и функциональные авт о матизированные системы, например, проектирование плановых расчётов, мат е риально-технического снабжения и т.д.

Цели автоматизации управления

В общем случае, систему управления можно рассматривать в виде сов о купности взаимосвязанных управленческих процессов и объектов. Обобщенной целью автоматизации управления является повышение эффективности использ о вания потенциальных возможностей объекта управления . Таким образом, можно выделить ряд целей:

  1. Предоставление лицу, принимающему решение (ЛПР ) релевантных да н ных для принятия решений
  2. Ускорение выполнения отдельных операций по сбору и обработке да н ных
  3. Снижение количества решений, которые должно принимать ЛПР
  4. Повышение уровня контроля и исполнительской дисциплины
  5. Повышение оперативности управления
  6. Снижение затрат ЛПР на выполнение вспомогательных процессов
  7. Повышение степени обоснованности принимаемых решений

Состав АСУ

В состав АСУ входят следующие виды обеспечений: информационное, пр о граммное, техническое, организационное, метрологическое, правовое и лингв и стическое.

Основные классификационные признаки

Основными классификационными признаками, определяющими вид АСУ, являются:

  • сфера функционирования объекта управления (промышленность, стро и тельство, транспорт, сельское хозяйство, непромышленная сфера и т.д.)
  • вид управляемого процесса (технологический, организационный, экон о мический и т.д.);
  • уровень в системе государственного управления, включения управление народным хозяйством в соответствии с действующими схемами управления о т раслями (для промышленности: отрасль (министерство), всесоюзное объедин е ние, всесоюзное промышленное объединение, научно-производственное объед и нение, предприятие (организация), производство, цех, участок, технологический агрегат).

Функции АСУ

Функции АСУ устанавливают в техническом задании на создание конкре т ной АСУ на основе анализа целей управления, заданных ресурсов для их дост и жения, ожидаемого эффекта от автоматизации и в соответствии со стандартами, распространяющимися на данный вид АСУ. Каждая функция АСУ реализуется с о вокупностью комплексов задач, отдельных задач и операций. Функции АСУ в о б щем случае включают в себя следующие элементы (действия):

  • планирование и (или) прогнозирование;
  • учет, контроль, анализ;
  • координацию и (или) регулирование.

Необходимый состав элементов выбирают в зависимости от вида конкре т ной АСУ. Функции АСУ можно объединять в подсистемы по функциональному и другим признакам.

Функции при формировании управляющих воздействий

  • Функции обработки информации (вычислительные функции) – осущест в ляют учет, контроль, хранение, поиск, отображение, тиражирование, преобраз о вание формы информации;
  • Функции обмена (передачи) информации – связаны с доведением выр а ботанных управляющих воздействий до ОУ и обменом информацией с ЛПР;
  • Группа функций принятия решения (преобразование содержания инфо р мации) – создание новой информации в ходе анализа, прогнозирования или оп е ративного управления объектом

Классы структур АСУ

В сфере промышленного производства с позиций управления можно выд е лить следующие основные классы структур систем управления: децентрализ о ванную, централизованную, централизованную рассредоточенную и иерархич е скую.

Децентрализованная структура

Построение системы с такой структурой эффективно при автоматизации технологически независимых объектов управления по материальным, энергетич е ским, информационным и другим ресурсам. Такая система представляет собой совокупность нескольких независимых систем со своей информационной и алг о ритмической базой.

Для выработки управляющего воздействия на каждый объект управления необходима информация о состоянии только этого объекта.

Централизованная структура

Централизованная структура осуществляет реализацию всех процессов управления объектами в едином органе управления, который осуществляет сбор и обработку информации об управляемых объектах и на основе их анализа в соо т ветствии с критериями системы вырабатывает управляющие сигналы. Появление этого класса структур связано с увеличением числа контролируемых, регулиру е мых и управляемых параметров и, как правило, с территориальной рассредот о ченностью объекта управления.

Достоинствами централизованной структуры являются достаточно простая реализация процессов информационного взаимодействия; принципиальная во з можность оптимального управления системой в целом; достаточно легкая корре к ция оперативно изменяемых входных параметров; возможность достижения ма к симальной эксплуатационной эффективности при минимальной избыточности технических средств управления.

Недостатки централизованной структуры следующие: необходимость выс о кой надежности и производительности технических средств управления для д о стижения приемлемого качества управления; высокая суммарная протяженность каналов связи при наличии территориальной рассредоточенности объектов управления.

Централизованная рассредоточенная структура

Основная особенность данной структуры — сохранение принципа центр а лизованного управления, т.е. выработка управляющих воздействий на каждый объект управления на основе информации о состояниях всей совокупности объе к тов управления. Некоторые функциональные устройства системы управления я в ляются общими для всех каналов системы и с помощью коммутаторов подключаются к индивидуальным устройствам канала, образуя замкнутый контур управления.

Алгоритм управления в этом случае состоит из совокупности взаимосвяза н ных алгоритмов управления объектами, которые реализуются совокупностью вз а имно связанных органов управления. В процессе функционирования каждый управляющий орган производит прием и обработку соответствующей информации, а также выдачу управляющих сигналов на подчиненные объекты. Для реал и зации функций управления каждый локальный орган по мере необходимости вступает в процесс информационного взаимодействия с другими органами упра в ления. Достоинства такой структуры: снижение требований, к производительности и надежности каждого центра обработки и управления без ущерба для качества управления; снижение суммарной протяженности каналов связи.

Недостатки системы в следующем: усложнение информационных проце с сов в системе управления из-за необходимости обмена данными между центрами обработки и управления, а также корректировка хранимой информации; избыто ч ность технических средств, предназначенных для обработки информации; сло ж ность синхронизации процессов обмена информацией.

Иерархическая структура

С ростом числа задач управления в сложных системах значительно увел и чивается объем переработанной информации и повышается сложность алгори т мов управления. В результате осуществлять управление централизованно нево з можно, так как имеет место несоответствие между сложностью управляемого объекта и способностью любого управляющего органа получать и перерабат ы вать информацию.

Кроме того, в таких системах можно выделить, следующие, группы задач, каждая из которых характеризуется соответствующими требованиями по времени реакции на события, происходящие в управляемом процессе:

задачи сбора данных с объекта управления и прямого цифрового управления (время реакции, секунды, доли секунды);

задачи экстремального управления, связанные с расчётами желаемых параметров управляемого процесса и требуемых значений уставок регуляторов, с логическими задачами пуска и остановки агрегатов и др. (время реакции — секунды, минуты);

задачи оптимизации и адаптивного управления процессами, технико-экономические задачи (время реакции — несколько секунд);

информационные задачи для административного управления, задачи диспетчеризации и координации в масштабах цеха, предприятия, задачи планирования и др. (время реакции — часы).

Очевидно, что иерархия задач управления приводит к необходимости создания иерархической системы средств управления. Такое разделение, позволяя справиться с информационными трудностями для каждого местного органа управления, порождает необходимость согласования принимаемых этими органами решений, т. е. создания над ними нового управляющего органа. На каждом уровне должно быть обеспечено максимальное соответствие характеристик технических средств заданному классу задач.

Кроме того, многие производственные системы имеют собственную иерархию, возникающую под влиянием объективных тенденций научно-технического прогресса, концентрации и специализации производства, способствующих повышению эффективности общественного производства. Чаще всего иерархическая структура объекта управления не совпадает с иерархией системы управления. Следовательно, по мере роста сложности систем выстраивается иерархическая пирамида управления. Управляемые процессы в сложном объекте управления требуют своевременного формирования правильных решений, которые приводили бы к поставленным целям, принимались бы своевременно, были бы взаимно согласованы. Каждое такое решение требует постановки соответствующей задачи управления. Их совокупность образует иерархию задач управления, которая в ряде случаев значительно сложнее иерархии объекта управления.

Виды АСУ

  • Автоматизированная система управления технологическим процессом или АСУ ТП — решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте.
  • Автоматизированная система управления производством (АСУ П ) — решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса. Для решения этих задач применяются MIS и MES -системы, а также LIMS -системы.

Примеры:

  • Автоматизированная система управления уличным освещением («АСУ УО») — предназначена для организации автоматизации централизованного управления уличным освещением.
    • Автоматизированная система управления наружного освещения («АСУНО») — предназначена для организации автоматизации централизованного управления наружным освещением.
    • Автоматизированная система управления дорожным движением или АСУ ДД — предназначена для управления транспортных средств и пешеходных потоков на дорожной сети города или автомагистрали
  • Автоматизированная система управления предприятием или АСУП — для решения этих задач применяются MRP , MRP II и ERP -системы. В случае, если предприятием является учебное заведение, применяются системы управления обучением .

Примеры:

  • « Система управления гостиницей ». Наряду с этим названием употребляется PMS Property Management System
    • « Автоматизированная система управления операционным риском » - это программное обеспечение, содержащее комплекс средств, необходимых для решения задач управления операционными рисками предприятий: от сбора данных до предоставления отчетности и построения прогнозов.

Системы автоматического управления (САУ)

Типы систем автоматического управления

Система автоматического управления, как правило, состоит из двух основных элементов — объекта управления и управляющего устройства.

САУ можно разделить:

  1. По цели управления

Объект управления — изменение состояния объекта в соответствии с заданным законом управления. Такое изменение происходит в результате внешних факторов, например вследствие управляющих или возмущающих воздействий.

А) Системы автоматического регулирования

  • Системы автоматической стабилизации . Выходное значение поддерживается на постоянном уровне (заданное значение — константа ). Отклонения возникают за счёт возмущений и при включении.
  • Системы программного регулирования . Заданное значение изменяется по заранее заданному программному закону f. Наряду с ошибками, встречающимися в системах автоматического регулирования, здесь также имеют место ошибки от инерционности регулятора .
  • Следящие системы . Входное воздействие неизвестно. Оно определяется только в процессе функционирования системы. Ошибки очень сильно зависят от вида функции f(t).

Б) Системы экстремального регулирования

Способны поддерживать экстремальное значение некоторого критерия (например минимальное или максимальное), характеризующего качество функционирования объекта. Критерием качества, который обычно называют целевой функцией , показателем экстремума или экстремальной характеристикой , может быть либо непосредственно измеряемая физическая величина (например, температура , ток , напряжение , влажность , давление ), либо КПД , производительность и др.

Выделяют:

  • Системы с экстремальным регулятором релейного действия. Универсальный экстремальный регулятор должен быть хорошо масштабируемым устройством, способным исполнять большое количество вычислений в соответствии с различными методами.
    • Сигнум-регулятор используется как аналоговый анализатор качества, однозначно характеризующий лишь один подстраиваемый параметр систем. Он состоит из двух последовательно включенных устройств: Сигнум-реле ( D-триггер ) и исполнительный двигатель (интегратор ).
    • Экстремальные системы с безинерционным объектом
    • Экстремальные системы с инерционным объектом
    • Экстремальные системы с плавающей характеристикой. Используется в случае, когда экстремум меняется непредсказуемым или сложно идентифицируемым образом.
  • Системы с синхронным детектором (экстремальные системы непрерывного действия). В прямом канале имеется дифференцирующее звено , не пропускающее постоянную составляющую. Удалить или зашунтировать по каким-либо причинам это звено невозможно или неприменимо. Для обеспечения работоспособности системы используется модуляция задающего воздействия и кодирование сигнала в прямом канале, а после дифференцирующего звена устанавливают синхронный детектор фазы .

В) Адаптивные системы автоматического управления

Служат для обеспечения желаемого качества процесса при широком диапазоне изменения характеристик объектов управления и возмущений.

  1. По виду информации в управляющем устройстве

А) Замкнутые САУ

В замкнутых системах автоматического регулирования управляющее воздействие формируется в непосредственной зависимости от управляемой величины. Связь входа системы с его выходом называется обратной связью . Сигнал обратной связи вычитается из задающего воздействия. Такая обратная связь называется отрицательной .

Б) Разомкнутые САУ

Сущность принципа разомкнутого управления заключается в жестко заданной программе управления. То есть управление осуществляется «вслепую», без контроля результата, основываясь лишь на заложенной в САУ модели управляемого объекта. Примеры таких систем: таймер , блок управления светофора, автоматическая система полива газона, автоматическая стиральная машина и т. п.

В свою очередь различают:

  • Разомкнутые по задающему воздействию
  • Разомкнутые по возмущающему воздействию

Характеристика САУ

В зависимости от описания переменных системы делятся на линейные и нелинейные . К линейным относятся системы, состоящие из элементов описания, которые задаются линейными алгебраическими или дифференциальными уравнениями .

Если все параметры уравнения движения системы не меняются во времени, то такая система называется стационарной . Если хотя бы один параметр уравнения движения системы меняется во времени , то система называется нестационарной или с переменными параметрами .

Системы, в которых определены внешние (задающие) воздействия и описываются непрерывными или дискретными функциями во времени относятся к классу детерминированных систем.

Системы, в которых имеет место случайные сигнальные или параметрические воздействия и описываются стохастическими дифференциальными или разностными уравнениями относятся к классу стохастических систем.

Если в системе есть хотя бы один элемент, описание которого задается уравнением частных производных , то система относится к классу систем с распределенными переменными .

Системы, в которых непрерывная динамика, порождаемая в каждый момент времени, перемежается с дискретными командами, посылаемыми извне, называются гибридными системами .

Примеры систем автоматического управления

В зависимости от природы управляемых объектов можно выделить биологический, экологический, экономические и технические системы управления. В качестве примеров технического управления можно привести:

  • Системы дискретного действия или автоматы (торговые , игровые , музыкальные ).
  • Системы стабилизации уровня звука , изображения или магнитной записи . Это могут быть управляемые комплексы летательных аппаратов , включающие в свой состав системы автоматического управления двигателя , рулевыми механизмами , автопилоты и навигационные системы .

Другие похожие работы, которые могут вас заинтересовать.вшм>

7063. Автоматизированные информационные системы (АИС) 4.89 KB
Автоматизированная информационная система (АИС) - совокупность информации, экономико-математических методов (ЭММ) и моделей, технических, программных, технологических средств и специалистов, предназначенную для обработки информации и принятия управленческих решений.
1283. Автоматизированные информационные системы 369 KB
Автоматизированные системы. Понятие автоматизированной системы. Автоматизированные информационные системы. Производственные и хозяйственные предприятия фирмы корпорации банки органы территориального управления представляют собой сложные системы. Системы значительно отличаются между собой как по составу так и по главным целям.
20397. Современные автоматизированные системы контроля и учета энергоресурсов (АСКУЭ) 991.76 KB
Целью организации учета электрической энергии является процесс получения информирования и запоминания информации для целей государственной ведомственной и корпоративной отчетности а также для удовлетворения требований менеджмента компании. Статистическая техническая отчетность имеет...
17633. Анализ системы управления земельными ресурсами на различных уровнях управления 221.29 KB
Сущность информационного обеспечения управления земельными Ресурсами. Роль мониторинга земель в управлении земельными ресурсами. Анализ системы управления земельными ресурсами на различных уровнях Управления. Анализ объекта и субъекта управления земельными ресурсами в Российской Федерации.
18928. АНАЛИЗ СИСТЕМЫ УПРАВЛЕНИЯ ФИНАНСОВЫМИ РЕСУРСАМИ (на примере «ГУ – Управления Пенсионного фонда Российской Федерации в городе Элисте Республики Калмыкия») 140.07 KB
Правовой статус Пенсионного фонда и основные показатели деятельности его структурного подразделения. Пенсионный фонд - важное звено финансовой системы государства при этом он имеет ряд особенностей: фонд создан органами власти и управления и имеет строгую целевую направленность денежные...
6752. АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ (АВТОМАТЫ) 152.7 KB
Различают несколько разновидностей автоматов: универсальные работают на постоянном и переменном токе установочные предназначаются для установки в общедоступных помещениях и выполняются по типу установочных изделий быстродействующие постоянного тока и гашения магнитного поля мощных генераторов.
5095. АВТОМАТИЧЕСКИЕ ТОРМОЗА ВАГОНОВ И БЕЗОПАСНОСТЬ ДВИЖЕНИЯ ПОЕЗДОВ 142.26 KB
Цель курсового проекта – изучение и освоение методики выполнения тормозных расчетов, обеспечивающих соблюдение безопасности движения поездов и полное использование мощности локомотивов и грузоподъемности вагонов.
12753. Исследование теоретических основ организации системы управления продажами для разработки мероприятий по совершенствованию управления продажами на исследуемом предприятии 260.65 KB
Наличие сильной и постоянно развивающейся конкуренции, вынуждают организации заменять простую систему «купил-перепродал» на все более усложняющиеся модели, вовлекающие в сферу влияния предприятия как клиентов, так и поставщиков, вплоть до создания единой интегрированной цепи поставок. При этом важнейшую роль играет организация процесса продаж, которая также постоянно усложняется.
19979. БЕЗОПАСНОСТЬ ДВИЖЕНИЯ ПОЕЗДОВ И АВТОМАТИЧЕСКИЕ ТОРМОЗА ПОДВИЖНОГО СОСТАВА 9.73 MB
Характеристика тепловоза 2М62 Сила тяги локомотива Fкр кгс Вес локомотива P т iр 40000 240 0 Таблица. № 188 Б Рычажная передача Жб 84кгс т Жм 327кгс т ач мм 200 hур 17см бч мм 300 Pу 16кгс акмм 145 dур 5см бк мм 355 Sур 196см2 в мм 400 ж 654кгс т г мм 160 Dтц Fпр 150-159 кгс Определение длины тормозного пути и времени торможения поезда при экстренном торможении способом ПТР по интервалам скорости. Основное удельное сопротивление движению 4-осных грузовых вагонов на подшипниках качения роликовых подшипниках следует...
1663. Капли. Технологическая схема изготовления в промышленных условиях. Автоматические линии 72.3 KB
В настоящее время при лечении и профилактике заболеваний глаз используются следующие глазные ЛФ промышленного производства: капли мази пленки. Самой распространенной глазной ЛФ являются капли. Требования к глазным каплям Основные требования которым должны соответствовать глазные капли: стерильность; отсутствие механических включений; комфортность изотоничность оптимальное значение рН; химическая стабильность; пролонгирование действия.

Первым отличительным признаком автоматизированных систем управления (АСУ) от систем автоматического управления (САУ) является наличие в контуре человека-оператора (диспетчера). Кроме того, возможность выполнения дополнительных функций, благодаря использованию современных компьютерных технологий. Наглядным примером может служить одноконтурная система регулирования температуры воды на выходе теплообменника , которая представлена на рис. 2.

Вода подогревается до нужной температуры за счет энергии отработанного пара. Если реальная температура подогреваемой воды Треал , измеряемая термопарой, отличается от заданной Тзад , то управляющее устройство УУ, состоящее из измерительного, регулирующего блоков и усилителя мощности, вырабатывает управляющее воздействие на мотор М, регулирующий отбор отработанного пара так, чтобы скомпенсировать эту разницу.

Несмотря на то, что регулирование в контуре осуществляется по ПИД-закону, обеспечить максимальный КПД теплообменника без дополнительных функций и устройств в рассматриваемой системе не представляется возможным.

Дополнительные датчики температуры Т1 и расхода Q1 питательной воды, температуры Т2 и расхода горячего пара Q2 позволяют при наличии устройств преобразования аналоговой информации в цифровую и обратно (на рис. 21 не показаны) реализовать функции:

- Ф1 – расчет задания Q2зад в соответствии с принятым критерием, учетом ситуации на объекте и использованием модели теплообменника;

- Ф2 – визуализация основных параметров для диспетчера;

- Ф3 – регулирование расхода Q2 по ПИД-закону с проверкой дополнительных условий;

- Ф4 – расчет технико-экономических параметров (ТЭП).

15. Режимы функционирования АСУ ТП

При создании АСУТП должны быть определены цель ее функционирования и роль, которая отводится этой системе в общей структуре управления предприятием. В соответствии с заданными функциями как вся система, так и входящие в нее подсистемы могут работать в различных режимах. Таких режимов может быть четыре:

1.режим сбора данных;

2.режим советчика оператора;

3.супервизорное управление;

Конец работы -

Эта тема принадлежит разделу:

Система і її властивості

Особливості сучасних систем.. система і її оточення.. проектування систем життєвий цикл..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Функции АСУТП как последовательность отдельных процессов
Функции АСУТП выбираются из списка, в котором они сгруппированы по своему назначению, например, для контроля, управления, исследования, планирования и т.д. Функция представляется в виде последовате

Непосредственное цифровое управление (НЦУ)
Информационно-измерительные системы или работа системы в режиме сбора данныхпредназначены для сбора и выдачи информации о состоянии объекта управления. Информационно-измер

Функционально-иерархическая структура ГСП
Рис. 3. Иерархия ГСП Конструктивно-технологическая структура ГСП представлена на рис. 5.

Локальные программируемые контроллеры
В настоящее время в промышленности используется два типа локальных контроллеров: Встраиваемый в оборудование и являющийся его неотъемлемой частью. Такой контроллер может управлять с

Сетевые комплексы контроллеров
Сетевые ПТК наиболее широко применяются для управления производственными процессами во всех отраслях промышленности. Ми­нимальный состав данного класса ПТК подразумевает наличие сле­дующих компонен

ПЛК для маломасштабных распределенных систем управления
Этот класс микропроцессорных ПТК превосходит большинство сетевых комплексов контроллеров по мощности и сложности выпол­няемых функций. В целом, этот класс еще имеет ряд ограничений по объему автома

ПЛК для полномасштабных распределенных АСУ ТП
Это наиболее мощный по возможностям и охвату производства класс контроллерных средств, практически не имеющий границ ни по выполняемым на производстве функциям, ни по объему автоматизи­руемого прои

Особые функции ПЛК
l глубокая диагностика работы вычислительных устройств, l меры автоматического резервирования, в т. ч. устранение неисправностей без останова устройства (использование жест

Что SCADA дает предприятию
· Точное соблюдение технологических нормативов и регламента. Значительное уменьшение процента брака, автоматическое повышение качества; · Снижение

Требования к мнемознакам и сигнальным элементам мнемосхем
Комплекс мнемознаков, используемых на одной мнемосхеме, должен быть разработан как единый алфавит. Необходимо, чтобы алфавит мнемознаков был максимально коротким, а различительные признаки

Ограничение мощности искры
По данному методу реализована защита вида "i" (искробезопасная цепь). Данный метод подразумевает, что в случае возникновения искры ее мощности будет недостаточно для воспламенения взрывоопасной сме