Позиции для перспективы карьерного роста. Перспективы и риски карьерного роста: советы современной молодежи

Министерство образования Кыргызской Республики

Министерство образования Российской федерации

Кыргызско-Российский славянский университет

Факультет архитектуры дизайна и строительства

Реферат

На тему:

«Роль физико-химических методов исследования в строительных материалах»

Выполнил: Подьячев Михаил гр. ПГС 2-07

Проверила: Джекишева С.Д.

План

1. Введение……………………………………………………………………….……стр. 3

2 . Физико-химические методы анализа и их классификация ………………….стр. 3-8 3.Основные строительные материалы исследуемые физико-химическими методами….стр. 8-9

4. Характеристика коррозионных процессов в строительных материалах…. стр. 9-13

5. Физико-химические методы исследования коррозии в строительных материалах………………стр. 13-15

6. Методы защиты строительных материалов от коррозии……………………стр. 15

7. Результаты исследования коррозии на основе физико-химических методов………стр. 16-18

8. Инновационные методы исследования коррозии…………………………стр. 18-20

9.Заключение………………………………………………………………………стр. 20

10. Список литературы……………………………………………………………стр.21

Введение.

Человеческая цивилизация на протяжении своего развития, по крайней мере, в материальной сфере постоянно использует химические, биологические и физические закономерности, действующие на нашей планете, для удовлетворения тех или иных своих потребностей.

В древности это происходило двумя путями: осознанно или стихийно. Нас, естественно, интересует первый путь. Примером осознанного использования химических явлений могут служить:

-

скисание молока, используемое для получения сыра, сметаны и других молокопродуктов;

-

брожение некоторых семян, например, хмеля в присутствии дрожжей с образованием пива;

-

возгонка пыльцы некоторых цветов (мака, конопли) и получение наркотиков;

-

брожение сока некоторых плодов (в первую очередь, винограда), содержащего много сахара, в результате чего получали вино, уксус.

Революционные преобразования в жизни человека внес огонь. Человек начал использовать огонь для приготовления пищи, в гончарном производстве, для обработки и выплавки металлов, переработки древесины в уголь, выпаривания и сушки продуктов на зиму.

Со временем у людей возникала потребность все в новых и новых материалах. Неоценимую помощь в их создании оказывала химия. Особенно велика роль химии в создании чистых и сверхчистых материалов (в дальнейшем сокращенно – СЧМ). Если в создании новых материалов, на мой взгляд, лидирующее положение занимают всё же физические процессы и технологии, то получение СЧМ зачастую более эффективно и продуктивно с помощью химических реакций. А так же возникла потребность в защите материалов от коррозии в этом собственно и состоит основная роль физико-химических методов в строительных материалах.С помощью физико-химических методов изучают физические явления, которые происходят при химических реакциях. Например, в колориметрическом методе измеряют интенсивность окраски в зависимости от концентрации вещества, в кондуктометрическом анализе измеряют изменение электрической проводимости растворов и т. д.

В данном реферате изложены некоторые виды коррозийных процессов, а так же способы борьбы с ними, что является основной практической задачей физико-химических методов в строительных материалах.

Физико-химические методы анализа и их классификация.

Физико-химические методы анализа (ФХМА) основаны на использовании зависимости физических свойств веществ (например, светопоглощения, электрической проводимости и т.д.) от их химического состава. Иногда в литературе от ФХМА отделяют физические методы анализа, подчёркивая тем самым, что в ФХМА используется химическая реакция, а в физических - нет. Физические методы анализа и ФХМА, главным образом в западной литературе, называют инструментальными, так как они обычно требуют применения приборов, измерительных инструментов. Инструментальные методы анализа в основном имеют свою собственную теорию, отличную от теории методов химического (классического) анализа (титриметрии и гравиметрии). Базисом этой теории является взаимодействие вещества с потоком энергии.

При использовании ФХМА для получения информации о химическом составе вещества исследуемый образец подвергают воздействию какого-либо вида энергии. В зависимости от вида энергии в веществе происходит изменение энергетического состояния составляющих его частиц (молекул, ионов, атомов), выражающееся в изменении того или иного свойства (например окраски, магнитных свойств и т.п.). Регистрируя изменение этого свойства как аналитический сигнал, получают информацию о качественном и количественном составе исследуемого объекта или о его структуре.

По виду энергии возмущения и измеряемого свойства (аналитического сигнала) ФХМА можно классифицировать следующим образом (табл.2.1.1).

Кроме перечисленных в таблице существует множество других частных ФХМА, не подпадающих под данную классификацию.

Наибольшее практическое применение имеют оптические, хроматографические и потенциометрические методы анализа.

Таблица 2.1.1.

Вид энергии возмущения

Измеряемое свойство

Название метода

Название группы методов

Поток электронов (эле-ктрохимические реак-ции в растворах и на электродах)

Напряжение, потенциал

Потенциометрия

Электрохимические

Ток поляризации электродов

Вольтамперо - метрия, полярография

Сила тока

Амперометрия

Сопротивление, проводимость

Кондуктометрия

Импеданс (сопротивление переменному току, ёмкость)

Осциллометрия, высокочастотная кондуктометрия

Количество электричества

Кулонометрия

Масса продукта электрохимической реакции

Электрограви-метрия

Диэлектрическая проницаемость

Диэлкометрия

Электромагнитное излучение

Длина волны и интенсивность спектральной линии в инфракрасной, видимой и ультрафиолетовой частях спектра =10-3...10-8 м

Оптические методы (ИК - спектро-скопия, атомно-эмиссионный анализ, атомно-абсорбционный анализ, фотомет-рия, люминис - центный анализ, турбидиметрия, нефелометрия)

Спектральные

То же, в рентгеновской области спектра =10-8...10-11 м

Рентгеновская фотоэлектронная, оже-спектроско-пия

Времена релаксации и химический сдвиг

Спектроскопия ядерномагнитного (ЯМР) и электронного парамагнитного (ЭПР) резонанса

Температура

Термический анализ

Тепловые

Термограви - метрия

Количество теплоты

Калориметрия

Энтальпия

Термометрический анализ (энтальпиметрия)

Механические свойства

Дилатометрия

Энергия химических и физических (Ван-дер-Ваальсо-вые силы) взаимодействий

Электропроводность Теплопроводность Ток ионизации

Газовая, жидкостная, осадочная, ионообменная, гельпроникающая хроматографии

Хроматографические

По сравнению с классическими химическими методами ФХМА отличаются меньшим пределом обнаружения, временем и трудоёмкостью. ФХМА позволяют проводить анализ на расстоянии, автоматизировать процесс анализа и выполнять его без разрушения образца (недеструктивный анализ).

По способам определения различают прямые и косвенные ФХМА. В прямых методах количество вещества находят непосредственным пересчётом измеренного аналитического сигнала в количество вещества (массу, концентрацию) с помощью уравнения связи. В косвенных методах аналитический сигнал используется для установления конца химической реакции (как своеобразный индикатор), а количество определяемого вещества, вступившего в реакцию, находят с помощью закона эквивалентов, т.е. по уравнению, непосредственно не связанному с названием метода.

По способу количественных определений различают без эталонные и эталонные инструментальные методы анализа.

Без эталонные методы основаны на строгих закономерностях, формульное выражение которых позволяет пересчитать интенсивность измеренного аналитического сигнала непосредственно в количестве определяемого вещества с привлечением только табличных величин. В качестве такой закономерности может выступать, например, закон Фарадея, позволяющий по току и времени электролиза рассчитать количество определяемого вещества в растворе при кулонометрическом титровании. Безэталонных методов очень мало, поскольку каждое аналитическое определение представляет собой систему сложных процессов, в которых невозможно теоретически учесть влияние каждого из многочисленных действующих факторов на результат анализа. В связи с этим при анализах пользуются определёнными приёмами, позволяющими экспериментально учесть эти влияния. Наиболее распространённым приёмом является применение эталонов, т.е. образцов веществ или материалов с точно известным содержанием определяемого элемента (или нескольких элементов). При проведении анализа измеряют определяемое вещество исследуемого образца и эталона, сравнивают полученные данные и по известному содержанию элемента в эталоне рассчитывают содержание этого элемента в анализируемом образце. Эталоны могут быть изготовлены промышленным способом (стандартные образцы, стали-нормали) или приготовляются в лаборатории непосредственно перед проведением анализа (образцы сравнения). Если в качестве стандартных образцов применяют химически чистые вещества (примесей меньше 0.05%), то их называют стандартными веществами.

На практике количественные определения инструментальными методами осуществляют по одному из трёх способов: градуировочной функции (стандартных серий), стандартов (сравнения) или стандартных добавок.

При работе по методу градуировочной функции с помощью стандартных веществ или стандартных образцов получают ряд образцов (или растворов), содержащих различные, но точно известные количества определяемого компонента. Иногда этот ряд называют стандартной серией. Затем проводят анализ этой стандартной серии и по полученным данным вычисляют значение чувствительности К (в случае линейной градуировочной функции). После этого измеряют интенсивность аналитического сигнала А в исследуемом объекте и вычисляют количество (массу, концентрацию) искомого компонента с помощью уравнения связи /> или находят по градуировочному графику (см. рис.2.1.1).

Метод сравнения (стандартов) применим только для линейной градуировочной функции. Определение данного компонента проводят в стандартном образце (стандартном веществе) и получают

Потом определяют в анализируемом объекте

Делением первого уравнения на второе исключают чувствительность

и вычисляют результат анализа

Метод стандартных добавок применим тоже только к линейной градуировочной функции. В этом методе сначала проводят анализ навески исследуемого объекта и получают />, затем к навеске добавляют известное количество (массу, объём раствора) определяемого компонента и после анализа получают

Делением первого уравнения на второе исключают К и получают формулу для расчёта результатов анализа:

Спектр вещества получают, воздействуя на него температурой, потоком электронов, световым потоком (электромагнитной энергией) с определённой длиной волны (частоты излучения) и другими способами. При определённой величине энергии воздействия вещество способно перейти в возбуждённое состояние. При этом происходят процессы, приводящие к появлению в спектре излучения с определённой длиной волны (табл.2.2.1).

Излучение, поглощение, рассеяние или рефракция электромагнитного излучения может рассматриваться как аналитический сигнал, несущий информацию о качественном и количественном составе вещества или о его структуре. Частота (длина волны) излучения определяется составом исследуемого вещества, а интенсивность излучения пропорциональна числу частиц, вызвавших его появление, т.е. количеству вещества или компонента смеси.

Каждый из аналитических методов обычно использует не полный спектр вещества, охватывающий диапазон длин волн от рентгеновских излучений до радиоволн, а только определённую его часть. Спектральные методы обычно различают по диапазону длин волн спектра, являющемуся рабочим для данного метода: ультрафиолетовые (УФ), рентгеновские, инфракрасные (ИК), микроволновые и т.д.

Методы, работающие в УФ, видимом и ИК диапазоне называют оптическими. Они больше всего применяются в спектральных методах вследствие сравнительной простоты оборудования для получения и регистрации спектра.

Атомно-эмиссионный анализ (АЭА) основан на качественном и количественном определении атомного состава вещества путём получения и изучения спектров эмиссии атомов, входящих в состав вещества.

Пи АЭА анализируемая проба вещества вводится в источник возбуждения спектрального прибора. В источнике возбуждения данная проба подвергается сложным процессам, заключающимся в плавлении, испарении, диссоциации молекул, ионизации атомов, возбуждении атомов и ионов.

Возбуждённые атомы и ионы через очень короткое время (~10-7-108с) самопроизвольно возвращаются из неустойчивого возбуждённого состояния в нормальное или промежуточное состояние. Это приводит к излучению света с частотой  и появлению спектральной линии.

Общую схему атомной эмиссии можно представить так:

А + Е  А*  А + h

Степень и интенсивность протекания этих процессов зависит от энергии источника возбуждения (ИВ).

Наиболее распространёнными ИВ являются: газовое пламя, дуговые и искровые разряды, индукционно связанная плазма (ИСП). Их энергетической характеристикой можно считать температуру.

Количественный АЭА основан на зависимости между концентрацией элемента и интенсивностью его спектральных линий, которая определяется формулой Ломакина:

где I - интенсивность спектральной линии определяемого элемента; c - концентрация; a и b - константы.

Величины a и b зависят от свойств аналитической линии, ИВ, соотношения концентраций элементов в пробе, поэтому зависимость /> обычно устанавливается эмпирически для каждого элемента и каждого образца. На практике обычно пользуются методом сравнения с эталоном.

При количественных определениях используют в основном фотографический способ регистрации спектра. Интенсивность спектральной линии, получаемой на фотопластинке, характеризуется ее почернением:

где S - степень почернения фотопластинки; I0 - интенсивность света проходящего через незачерненную часть пластинки, а I - через зачерненную, т.е. спектральную линию. Измерение почернения спектральной линии проводят по сравнению с почернением фона или по отношению к интенсивности линии сравнения. Полученная разность почернений (S) прямо пропорциональна логарифму концентрации (с):

При методе трех эталонов на одной фотопластинке фотографируют спектры трех эталонов с известным содержанием элементов и спектр анализируемого образца. Измеряют почернение выбранных линий. Строят градуировочный график, по которому находят содержание изучаемых элементов.

В случае анализа однотипных объектов применяют метод постоянного графика, который строят по большому числу эталонов. Затем в строго одинаковых условиях снимают спектр образца и одного из эталонов. По спектру эталона проверяют не произошло ли смещение графика. Если смещения нет, то неизвестную концентрацию находят по постоянному графику, а если есть, то величину смещения учитывают с помощью спектра эталона.

При количественном АЭА погрешность определения содержания основы составляет 1-5%, а примеси - до 20%. Визуальный метод регистрации спектра быстрее, но менее точен, чем фотографический.

По аппаратурному оформлению можно выделить АЭА с визуальной, фотографической и фотоэлектрической регистрацией и измерением интенсивности спектральных линий.

Визуальные методы (регистрация с помощью глаза) можно использовать только для исследования спектров с длинами волн в области 400 - 700 нм. Средняя спектральная чувствительность глаза максимальна для желто-зеленого света с длиной волны  550 нм. Визуально можно с достаточной точностью установить равенство интенсивностей линий с ближайшими длинами волн или определить наиболее яркую линию. Визуальные методы делятся на стилоскопические и стилометрические.

Стилоскопический анализ основан на визуальном сравнении интенсивностей спектральных линий анализируемого элемента (примеси) и близлежащих линий спектра основного элемента пробы. Например, при анализе сталей обычно сравнивают интенсивности спектральных линий примеси и железа. При этом используют заранее известные стилоскопические признаки, в которых равенству интенсивности линий определенной аналитической пары соответствует определенная концентрация анализируемого элемента.

Стилоскопы используют для экспресс-анализа, для которого не требуется высокой точности.6-7 элементов определяют за 2-3 мин. Чувствительность анализа 0,01-0,1%. Для анализа применяют как стационарные стилоскопы СЛ-3… СЛ-12, так и переносные СЛП-1… СЛП-4.

Стилометрический анализ отличается от стилоскопического тем, что более яркую линию аналитической пары ослабляют при помощи специального устройства (фотометра) до установления равенства интенсивностей обеих линий. Кроме того, стилометры позволяют сближать в поле зрения аналитическую линию и линию сравнения, что значительно повышает точность измерений. Для анализа применяют стилометры СТ-1… СТ-7.

Относительная погрешность визуальных измерений 1 – 3%. Их недостатками являются ограниченность видимой области спектра, утомительность, отсутствие объективной документации о проведении анализа.

Фотографические методы основаны на фотографической регистрации спектра с помощью специальных приборов-спектрографов. Рабочая область спектрографов ограничена длиной волны 1000 нм, т.е. их можно использовать в видимой области и УФ. Интенсивность спектральных линий измеряют по степени почернения их изображения на фотопластинке или фотопленке.

Основные строительные материалы исследуемые физико-химическими методами. Строительные материалы и изделия, применяемые при строительстве,реконструкции и ремонте различных зданий и сооружений, делятся на природныеи искусственные, которые в свою очередь подразделяются на две основныекатегории: к первой категории относят: кирпич, бетон, цемент, лесоматериалыи др. Их применяют при возведении различных элементов зданий (стен,перекрытий, покрытий, полов). Ко второй категории - специальногоназначения: гидроизоляционные, теплоизоляционные, акустические и др. Основными видами строительных материалов и изделий являются: каменныеприродные строительные материалы из них; вяжущие материалы неорганические иорганические; лесные материалы и изделия из них; металлические изделия. Взависимости от назначения, условий строительства и эксплуатации зданий исооружений подбираются соответствующие строительные материалы, которыеобладают определёнными качествами и защитными свойствами от воздействия наних различной внешней среды. Учитывая эти особенности, любой строительныйматериал должен обладать определёнными строительно-техническими свойствами.Например, материал для наружных стен зданий должен обладать наименьшейтеплопроводность

Цель работы: 1. Ознакомиться с основными методами исследования свойств строительных материалов.

2. Проанализировать основные свойства строительных материалов.

1. Определение истинной (абсолютной) плотности материала

(пикнометрический метод) (ГОСТ 8269)

Для определения истинной плотности берут раздробленные строительные материалы: кирпич, известняковый щебень, керамзитовый гравий, их измельчают, пропускают через сито с ячейкой менее 0,1 мм и отбирают навеску массой по 10 г каждая (m).

Каждую навеску высыпают в чистый высушенный пикнометр (Рис. 1) и наливают в него дистиллированную воду в таком количестве, чтобы пикнометр был заполнен не более чем на половину своего объема, затем пикнометр встряхивают, смачивая весь порошок, ставят на песчаную баню и нагревают содержимое не до кипения в наклонном положении в течение 15-20 минут для удаления пузырьков воздуха.

Рис. 1 – Пикнометр для определения истинной плотности материала

Затем пикнометр обтирают, охлаждают до комнатной температуры, доливают до метки дистиллированную воду и взвешивают (m 1), после чего пикнометр освобождают от содержимого, промывают, наполняют до метки дистиллированной водой комнатной температуры и еще раз взвешивают (m 2). В тетради чертят таблицу, в которую заносят массы каждого материала и последующих расчетов.

Истинная плотность материала определяется по формуле:

где масса навески порошка, г.;

Масса пикнометра с навеской и водой после кипячения, г.;

Масса пикнометра с водой, г.;

Плотность воды, равная 1 г/см 3 .

2. Определение средней плотности образца правильной геометрической формы (ГОСТ 6427)

Среднюю плотность лучше определять у тех же материалов- кирпича, куска известняка и керамзитового гравия. Объем образцов правильной геометрической формы (кирпича) определяют по геометрическим размерам в соответствии с рисунком, измеренным с погрешностью не более 0,1 мм. Каждый линейный размер вычисляют как среднее арифметическое трех измерений. Образцы должны быть сухими.

Объем образцов неправильной формы определяют по вытесненной воде, опуская в мерный цилиндр с водой кусок известняка или гравия, который тонет, с отметкой объема вытесненной жидкости. 1мл=1см 3 .

Рис. 1 – Измерение линейных размеров и объема образца

призмы цилиндра

Средняя плотность определяется по формуле:

где масса сухого образца, г.;

Объем образца, см 3 .

№ п/п Материал П, %
кирпич
известняк
керамзит
кв. песок

3. Определение пористости материала (ГОСТ 12730.4)

Зная истинную плотность и среднюю плотность кирпича, известняка, керамзитового гравия, определяют пористость материала П, %, по формуле:

где средняя плотность материала, г/см 3 или кг/м 3 ;

Истинная плотность материала, г/см 3 или кг/м 3 .

Сравнительная плотность разных материалов приведена в приложении А. Результаты заносятся в таблицу.

4. Определение насыпной плотности (ГОСТ 8269)

Сыпучий материал (песок, керамзитовый гравий, щебень) в объеме, обеспечивающем проведение испытания, высушивают до постоянной массы. Материал насыпают в предварительно взвешенный мерный цилиндр (m) с высоты 10 см до образования конуса, который снимают стальной линейкой вровень с краями (без уплотнения) движением к себе, после чего цилиндр с навеской взвешивают (m 1).

Рис. 3. Воронка для определения насыпной плотности песка

1 – воронка; 2 – опоры; 3 – заслонка

Насыпная плотность материала определяется по формуле:

где масса мерного цилиндра, г;

Масса мерного цилиндра с навеской, г;

Объем мерного цилиндра, л.

Результаты заносятся в таблицу.

5. Определение пустотности (ГОСТ 8269)

Пустотность (V пуст, %) сыпучего материала определяют, зная насыпную и среднюю плотность сыпучего материала по формуле:

где насыпная плотность материала, кг/м 3 ;

Средняя плотность материала, кг/м 3 .

Средняя плотность песка кварцевого не определяется, её принимают такой, как истинная – 2,65 г/см 3 .

6. Определение влажности материала (ГОСТ 8269)

Пробу материала в количестве 1,5 кг насыпают в сосуд и взвешивают , затем высушивают до постоянной массы в сушильном шкафу (это надо делать заранее). Чтобы определить влажность на уроке, можно сделать наоборот: взвесить в сосуде произвольное количество сухого песка и намочить его произвольно, опять взвесить, получив и .

Влажность W ,%, определяется по формуле:

где масса влажной пробы, г;

Масса пробы в сухом состоянии, г.

Для определения водопоглощения отбирают три образца любой формы размером от 40 до 70 мм или кирпич, определяют объем . Образцы очистить от пыли металлической щеткой и высушить до постоянной массы. Затем их взвешивают и укладывают в сосуд с водой комнатной температуры так, чтобы уровень воды в сосуде был выше верха образцов не менее чем на 20 мм. В таком положении образцы выдерживают в течение 48 час. После чего их вынимают из воды, удаляют влагу с поверхности отжатой влажной мягкой тканью и каждый образец взвешивают .

Водопоглощение по массе W погл, %, определяется по формуле:

Водопоглощение по объему W о, %, определяется по формуле:

где масса образца в сухом состоянии, г;

Масса образца после насыщения его водой, г;

Объем образца в естественном состоянии, см 3 .

Относительную плотность определяют как:

Коэффициент насыщения материала водой определяют:

Вычислив все показатели с преподавателем, студент получает индивидуальное задание по вариантам задач контрольной №1.

7. Определение предела прочности при сжатии (ГОСТ 8462)

Прочность при сжатии определяют на кубиках размеров 7,07×7,07×7,07 см, 10×10×10 см, 15×15×15 см и 20×20×20 см. Кирпич и балочки сначала испытывают на прочность при изгибе (8), затем половинки испытывают на сжатие.

Для определения прочности при сжатии образцы правильной геометрической формы (балочки, кубики, кирпич) подвергают осмотру, обмеру и испытывают на гидравлическом прессе. Устанавливают образец в центре опорной плиты и прижимают верхней плитой пресса, которая должна плотно прилегать по всей грани образца. При испытании нагрузка на образец должна возрастать непрерывно и равномерно. Наибольшая сжимающая нагрузка соответствует максимальному показанию манометра во время испытания.

При испытании на прочность при сжатии кубов, верхняя грань куба должна стать боковой гранью, чтобы исключить неровности.

Предел прочности при сжатии R сж, МПа, для образцов-кубов из бетона определяется по формуле:

где максимальная разрушающая нагрузка, кН;

Площадь поперечного сечения образца (среднее арифметическое площадей верхней и нижней граней), см 2 .

8. Определение предела прочности при изгибе. (ГОСТ 8462)

Предел прочности при изгибе определяется на образцах – балочках с помощью универсальной машины МИИ-100, которая дает сразу показания прочности в кг/см 2 или на кирпиче с помощью пресса гидравлического с примене нием катков по схеме, предложенной на рисунке 5. Испытания прочности кирпича обязательно надо показать, затем определить прочность половинок при сжатии (9), марку кирпича.

Рис. 4 – Испытательная машина МИИ-100 для определения предела прочности при изгибе

Рис.5 – Схема испытания предела прочности при изгибе

Предел прочности при изгибе R изг, МПа, определяется по следующей формуле:

Расстояние между осями опор, см;

Ширина образца, см;

Высота образца, см.

Материал
кирпич
балочка
кубик

9. Определение коэффициента конструктивного качества (удельной прочности материала)

Результаты вычислений занести в таблицу.

Контрольные вопросы

1. Назовите основные свойства строительных материалов, какие важны для конструкционных материалов?

2. Какие плотности определяют у строительных материалов, как?

3. Что такое истинная плотность? Зачем ее определяют?

4. Что такое насыпная плотность? Как она определяется и для чего?

5. Чтобы определить среднюю плотность, какой объем надо знать? Как определить объем куска щебня?

6. Какая плотность имеет наибольшее числовое выражение у одного и того же материала, какая наименьшее? Почему?

7. Для каких материалов определяют пустотность, чем она отличается от пористости? Сравните истинную, среднюю, и насыпную плотности у кварцевого песка, кирпича, керамзитового гравия или известнякового щебня.

8. В какой зависимости находится общая пористость от плотности? Что такое пористость?

9. Какая пористость может быть в материале? Как ее можно определить?

10. Влияет ли пористость на влажность материала? Что такое влажность?

11. Чем влажность отличается от водопоглощения? О каких свойствах можно судить, зная водопоглощение?

12. Как определить коэффициент водонасыщения? Что он характеризует?

13. Как определить коэффициент размягчения? Каково его значение для воздушных и гидравлических вяжущих?

14. Будет ли меняться водо- и газопроницаемость при изменении плотности, как? При каком виде пористости эти показатели увеличиваются?

15. Влияет ли величина пористости на величину набухания и усадку материала? Какова усадка у ячеистого бетона, какова у тяжелого бетона?

16. Есть ли связь плотности материала с теплопроводностью? Какие материалы лучше защищают от холода? Из какого материала по плотности возводят стены жилых зданий?

17. Влияет ли увлажнение материала на коэффициент теплопроводности? Почему?

18. Каков коэффициент линейного температурного расширения у бетона, стали, гранита, древесины? Когда это имеет значение?

19. Можно ли использовать материалы с К н =1 для изготовления плит дорожного покрытия? Почему?

20. Чем пористость отличается от пустотности, по какой формуле определяют эти показатели?

21. Есть ли материалы, у которых истинная плотность равна средней?

22. Почему образуются поры в кирпиче, влияет ли способ формования кирпича на их количество?

23. Как увеличивают пористость в искусственном камне, зачем?

24. От чего происходит усадка, у каких материалов она больше: плотных или пористых?

25. Зависит ли усадка от водопоглощения материала? Какая вода в структуре материала не испаряется?

26. На каких образцах определяют прочность вяжущих, растворов и бетонов, по какой формуле считают прочность, в каких единицах?

27. От каких показателей зависит прочность, у каких структур она максимальна?

28. Почему прочность при изгибе у одних материалов больше, у других меньше прочности при сжатии? Как называют такие материалы?

29. От каких характеристик зависит морозостойкость?

30. Что называют удельной поверхностью, зависит ли увлажнение от этой характеристики?

Лабораторная работа №4

Гипсовые вяжущие

Цель работы: 1. Ознакомиться с основными свойствами гипса строительного.

2. Проанализировать основные свойства гипса строительного.

Акустические методы основаны на регистрации параметров упругих колебаний, возбужденных в контролируемой конструкции. Колебания возбуждаются обычно в ультразвуковом диапазоне (что уменьшает помехи) с помощью пьезометрического или электромагнитного преобразователя, удара по конструкции, а также при изменении структуры самой конструкции вследствие приложения нагрузки.

Акустические методы применяют для контроля сплошности (выявления включений, раковин, трещин и др.), толщины, структуры, физико-механических свойств (прочности, плотности, модуля упругости, модуля сдвига, коэффициента Пуассона), изучения кинетики разрушения.

По частотному диапазону акустические методы делят на ультразвуковые и звуковые, по способу возбуждения упругих колебаний -- на пьезоэлектрические, механические, электромагнитоакустические, самовозбуждения при деформациях. При неразрушающем контроле акустическими методами регистрируют частоту, амплитуду, время, механический импеданс (затухание), спектральный состав колебаний. Применяют продольные, сдвиговые, поперечные, поверхностные и нормальные акустические волны. Режим излучения колебаний может быть непрерывным или импульсным.

В группу акустических методов входят теневой, резонансный, эхо-импульсный, акустической эмиссии (эмиссионный), велосимметрический, импедансный, свободных колебаний.

Теневой метод служит для дефектоскопии и основан на установлении акустической тени, образующейся за дефектом вследствие отражения и рассеяния акустического луча. Резонансный метод применяется для дефектоскопии и тол- щинометрии. При этом методе определяются частоты, вызывающие резонанс колебаний по толщине исследуемой конструкции.

Импульсный метод (эхо) используется для дефектоскопии и толщинометрии. Устанавливается отраженный от дефектов или поверхности акустический импульс. Эмиссионный метод (метод акустической эмиссии) основан на излучении волн упругих колебаний дефектами, а также участками конструкции при нагружении. Определяются наличие и место дефектов, уровень напряжений. акустический материал дефектоскопия радиационный

Велосимметрический метод основан на фиксации скоростей колебаний, влиянии дефектов на скорость распространения волн и длину пути волн в материале. Импедансный метод основан на анализе изменения затухания волн в зоне дефекта. В методе свободных колебаний анализируется спектр частот собственных колебаний конструкции после нанесения по ней удара.

При применении ультразвукового метода для возбуждения и приема ультразвуковых колебаний служат излучатели и приемники (или искатели). Они выполнены однотипно и представляют собой пьезопластину 1, помещенную в демпфере 2, который служит для гашения свободных колебаний и для защиты пьезопластины (рис. 1).

Рис. 1. Конструкции"искателей и схемы их установки:

а -- схема нормального искателя (излучателя или приемника колебаний); б -- схема искателя для ввода ультразвуковых волн под углом к поверхности; в -- схема двухэлементного искателя; г -- соосное положение излучателей и приемников при сквозном прозвучивании; д -- то же, диагональное; е -- поверхностное прозвучивание; ж -- комбинированное прозвучивание; 1 -- пьезоэлемент; 2 -- демпфер; 3 -- протектор; 4 -- смазка на контакте; 5 -- исследуемый образец; 6 -- корпус; 7 -- выводы; 8 - призма для ввода волн под углом; 9 -- разделительный экран; 10 -- излучатели и приемники;

Ультразвуковые волны отражаются, преломляются и подвергаются дифракции по законам оптики. Эти свойства используют для улавливания колебаний во многих методах неразрушающего контроля. При этом для исследования материала в заданном направлении применяют узконаправленный пучок волн. Положение излучателя и приемника колебаний в зависимости от цели исследования может быть различным по отношению к изучаемой конструкции (рис. 1, г--ж).

Разработаны многочисленные приборы, в которых использованы перечисленные выше методы ультразвуковых колебаний. В практике строительных исследований используются приборы ГСП УК14П, Бетон-12, УФ-10 П, УЗД- МВТУ, ГСП УК-ЮП и др. Приборы «Бетон» и УК изготовлены на транзисторах и отличаются небольшой массой и габаритами. Приборы УК фиксируют скорость или время распространения волн.

Ультразвуковые колебания в твердых телах делятся на продольные, поперечные и поверхностные (рис. 2, а).

Рис. 2.

а -- ультразвуковые продольные, поперечные и поверхностные волны; б, в -- теневой метод (дефект вне зоны и в зоне прозвучивания); 1 -- направление вибрации; 2 -- волны; 3 -- генератор; 4 -- излучатель; 5 -- приемник; 6 -- усилитель; 7 -- индикатор; 8 исследуемый образец} 9 -- дефект

Существуют зависимости между параметрами колебаний

Таким образом, физико-механические свойства материала связаны с параметрами колебаний. В методах неразрушающего контроля используют эту взаимосвязь. Рассмотрим простые и широко применяющиеся методы ультразвукового контроля: теневой и эхо-метод.

Определение дефекта теневым методом происходит следующим образом (см. рис. 2, б): генератор 3 через излучатель 4 непрерывно излучает колебания в исследуемый материал 8, а через него -- в приемник колебаний 5. В случае отсутствия дефекта 9 колебания воспринимаются приемником 5почти без затухания и фиксируются через усилитель 6 индикатором 7 (осциллографом, вольтметром). Дефект 9 отражает часть энергии колебаний, затеняя таким образом приемник 5. Принятый сигнал уменьшается, что свидетельствует о наличии дефекта. Теневой метод не позволяет определить глубину расположения дефекта и требует двустороннего доступа, что ограничивает его возможности.

Дефектоскопия и толщинометрия эхо-импульсным методом осуществляется так (рис. 3): генератор 1 через излучатель 2 посылает в образец 4 короткие импульсы, а ждущая развертка на экране осциллографа позволяет видеть посланный импульс 5. Вслед за посылкой импульса излучатель переключается на прием отраженных волн. Отраженный от противоположной стороны конструкции донный сигнал 6 наблюдают на экране. Если на пути волн находится дефект, то отраженный от него сигнал поступает на приемник раньше, чем донный сигнал. Тогда на экране осциллографа виден еще один сигнал 8, свидетельствующий о дефекте в конструкции. По расстоянию между сигналами и по скорости распространения ультразвука судят о глубине расположения дефекта.

Рис. 3.

а -- эхо-метод без дефекта; 6 -- то же, с дефектом; в определение глубины трещины; г -- определение толщины; 1 -- генератор; 2 -- излучатель; 3 -- отраженные сигналы; 4 -- образец; 5 -- посланный импульс;6 -- донный импульс; 7 дефект; 8 -- средний импульс; 9 -- трещина;10 -- полуволны

При определении глубины трещины в бетоне излучатель и приемник располагают в точках А и В симметрично относительно трещины (рис. 3, в). Колебания из точки А в точку В приходят по кратчайшему пути АСВ = V 4№ + а2;

где V -- скорость; 1Н -- время, определяемое в опыте.

При дефектоскопии бетона с помощью ультразвукового импульсного метода используют сквозное прозвучивание и продольное профилирование. Оба метода позволяют обнаружить дефект за счет изменения значения скорости продольных волн ультразвука при прохождении через дефектный участок.

Метод сквозного прозвучивания можно применять и при наличии арматуры в бетоне, если удается избежать непосредственного пересечения трассой прозвучивания самого стержня. Последовательно прозвучивают участки конструкции и отмечают на координатной сетке точки, а затем и линии равных скоростей -- изоспиды, или линии равного времени -- изохоры, рассматривая которые можно выделить участок конструкции, на котором имеется дефектный бетон (зона пониженных скоростей).

Метод продольного профилирования позволяет вести дефектоскопию при расположении излучателя и приемника на одной поверхности (дефектоскопия дорожных и аэродром- н.IX покрытий, фундаментных плит, монолитных плит перекрытий и т. д.). Этим методом можно также определить глубину (от поверхности) поражения бетона коррозией.

Толщину конструкции при одностороннем доступе можно определить резонансным методом с использованием серийно выпускаемых ультразвуковых толщинометров. В конструкцию с одной из сторон непрерывно излучают продольные ультразвуковые колебания (рис. 2.4, г). Отраженная от противоположной грани волна 10 идет в обратном направлении. При равенстве толщины Н и длины полуволн (или при кратности этих величин) прямые и отраженные волны совпадают, что ведет к резонансу. Толщина определяется по формуле

где V -- скорость распространения волн; / -- резонансная частота.

Прочность бетона можно определить при помощи измерителя амплитудного затухания ИАЗ (рис. 2.5, а), работающего с использованием резонансного метода. Колебания конструкции возбуждаются мощным динамиком, располагаемым на расстоянии 10--15 мм от конструкции. Приемник преобразует колебания конструкции в электрические, показываемые на экране осциллографа. Частоту вынужденных колебаний плавно меняют до совпадения с частотой собственных колебаний и получения резонанса. Частота резонанса регистрируется на шкале генератора. Предварительно строят калибровочную кривую для бетона испытываемой конструкции, по которой и определяют прочность бетона.

Рис.4.

а -- общий вид измерителя амплитудного затухания; б -- схема определения частоты собственных продольных колебаний балки; в -- схема определения частоты собственных изгибных колебаний балки; г -- схема для испытания ударным методом; 1 -- образец; 2, 3 -- излучатель (возбудитель) и приемник колебаний; 4 -- генератор; 5 --усилитель; 6 -- блок регистрации частоты собственных колебаний; 7 -- пусковая система с генератором счетных импульсов и микросекундомером; 8 -- ударная волна

При определении частот изгибных, продольных и крутильных колебаний образец 1, возбудитель 2 и приемник колебаний 3 устанавливают в соответствии со схемами на рис.4, б, е. При этом образец должен быть установлен на опоры стенда, частота собственных колебаний которого больше в 12--15 раз, чем частота собственных колебаний испытываемого элемента.

Прочность бетона может быть определена ударным методом (рис. 4, г). Метод применяется при достаточно большой длине конструкции, так как низкая частота колебаний не позволяет получить большую точность измерений. На конструкцию устанавливают два приемника колебаний с достаточно большим расстоянием между ними (базой). Приемники через усилители связаны с пусковой системой, счетчиком и микросекундомером. После нанесения удара по торцу конструкции ударная волна достигает первого приемника 2, который через усилитель 5 включает счетчик времени 7. При достижении волной второго приемника 3 счет времени прекращается. Скорость V рассчитывается по формуле

V = -- где а -- база; I-- время прохождения базы.

Отсутствие каких-либо движений внутри профессии, наоборот, настораживающий знак, на который обязательно обращают внимание работодатели при найме.

Что же такое карьера, и какая она бывает? Карьера - это результат целенаправленного движения в своей профессии. Карьера определяет положение индивидуума в оргструктуре компании. В наше время достижения в карьере – признак успешности личности. Очень часто, к сожалению, «достижения» принято мерить в денежном эквиваленте и количестве затраченного времени. Поэтому ценится возможность быстрого и продуктивного роста. И мало кто знает, что существуют разные виды профессионального развития, также считающиеся карьерой.

Есть два основных вида карьерного роставертикальный и горизонтальный . Понять это будет проще, если вспомнить, что любая организационная структура компании содержит вертикальные и горизонтальные линии, по которым и осуществляются основные взаимодействия: движение приказов, распределение ответственности, схема подчинения. По этим линиям происходит и карьерный рост. Рассмотрим подробнее каждый вид.

Вертикальный вид карьерного роста

Вертикальная карьера – это движение вверх по структурным ступеням иерархии. Вертикальное движение происходит от низших должностей до руководящих постов с соответствующим повышением зарплаты и уровня ответственности. Это классический случай развития - от до .

Карьерный взлет наиболее заметен именно в случае вертикального роста, поэтому понятие карьеры чаще всего связывают именно с ним. Строить такую карьеру не обязательно в одной компании, но всегда в одной области. Иногда повышение позиций требует освоения новых навыков и областей, при этом основное направление сохраняется.

Пример классической вертикальной карьеры в, скажем, туристическом бизнесе: курьер одного из офисов, помощник менеджера по работе с клиентами, старший менеджер, директор офиса и т. д.

Горизонтальный вид карьерного роста

Горизонтальная карьера предполагает профессиональный рост сотрудника как специалиста. Это повышение уровня мастерства, увеличение знаний и навыков. А также получение специализированных и уникальных умений, которыми обладает маленькое число людей (или никто), что делает работника весьма ценным и порой незаменимым в своей компании.

С продвижением по горизонтали у сотрудника меняются обязанности, заработная плата, расширяется функционал, но положение в структуре, чаще всего, остается прежним. В данном случае понятие непосредственно карьерной лестницы не совсем применимо. Пример горизонтального движения – это повышение в разрядах, научных степенях и пр.

Вертикальный рост возможен в любой сфере. Горизонтальная карьера, чаще всего, - прерогатива творческих профессий (художники, программисты, журналисты, дизайнеры). Далеко не всем интересна административная и управленческая деятельность, многие люди хотят совершенствоваться в выбранной специальности без претензии на кресло начальника.

Я пришла в компанию работать руководителем направления контента. Через какое-то время руководитель проекта уволился, и исполняющим его обязанности временно назначили меня. Успешно справившись с возложенными на меня обязанностями, руководство решило повысить меня до генерального директора. Я отказалась, т. к. к этому времени поняла, что финансовые и административные дела мне не интересны, а в должности генерального директора я должна буду проститься со своей специальностью. Я человек творческий, и делать бесконечные финансовые отчеты для меня испытание. За время и.о. проекта я находилась в состоянии стагнации как специалист своего направления. На данный момент я достигла по горизонтальной лестнице наивысшего результата и сейчас остановилась на вертикальном развитии своей карьеры. Лично мне это интереснее, хотя руководство не поняло мое решение. Елена, руководитель направления

Второй критерий, по которому можно классифицировать карьерный рост, – это место, где эта карьера делается. Бывают межорганизационная и внутриорганизационная карьера.

Развитие в одной компании

Внутриорганизационная карьера предполагает, что человек работает и совершенствуется в одной компании практически всю свою жизнь: от окончания учебного заведения до пенсии. В этой компании он и обучается, расширяет навыки, углубляет специализацию, растет профессионально. Такой вариант был популярен в нашей стране в советское время, однако, сейчас такие случаи большая редкость. В современном мире такую практику можно встретить в японских и американский компаниях.

Развитие в одной области

Межорганизационная карьера – это карьера в рамках одной области, но в разных компаниях. Еще такую карьеру называют диагональной . Со сменой должности сотрудник меняет и компанию. Такая форма карьерного роста очень популярно и любима, в первую очередь, за быстроту и эффективность. Ведь в рамках одной организации ждать освобождения желаемой позиции можно очень долго, тогда как переход в другую компанию, даже с некоторым понижением, дает более ощутимый результат. Во многих европейских странах считается, что место работы необходимо менять в среднем раз в три года, не засиживаясь в одной компании.

Очевидный минус диагонального роста – необходимость адаптироваться каждый раз к новому коллективу, корпоративной политике компании, иным ценностям. Только-только сотрудник окончательно вливается в коллектив, привыкает к коллегам, уже знает все подводные камни и хитросплетения взаимоотношений, как приходится снова уходить.

Диагональная карьера наиболее применима в случае вертикального роста, т. е. должностного повышения. В случае с профессиональным ростом ее эффективность значительно ниже и может помочь лишь обогатить опыт, расширить функционал. Да и говорить о быстроте здесь не приходится в принципе – горизонтальная карьера не предполагает быстрого роста, часто это даже может быть негативным показателем (если быстрота идет в ущерб качеству).

Вне зависимости от того, какого карьерного пути придерживается сотрудник, руководству необходимо предоставить ему перспективы для роста, дабы не потерять ценные кадры. В случае горизонтальной карьеры важно, чтобы эффективность и качество работы как-то оценивались, хорошо, если развитие прописано по ступеням. Это довольно сложно в творческих профессиях, и ступени весьма условны, однако, это позволяет человеку, опираясь на них, чувствовать, что он движется, а не стоит на месте. В случае вертикальной карьеры необходимо предоставлять перспективы к должностному повышению, особенно самым низшим по иерархии сотрудникам, ведь вряд ли они планируют оставаться дворниками или курьерами надолго. Если нет возможности продвинуть сотрудника вперед, то необходимо стимулировать его деятельность, давая понять, насколько он важен и ценен для компании.

Итак, подытожив, можно увидеть, что видов карьеры несколько и расти можно в любых интересующих направлениях. В наше время распространенной стала ценность достижения, успешности. Почти любой психологический обучающий тренинг содержит блок о тренировке лидерских качеств, развитии целеустремленности и способах достижении успеха. Человек иного склада в таких условиях чувствует свою неполноценность. И не потому, что у него не получается быть лидером, а потому, что ему это просто неинтересно. Не всем нравится управлять людьми, кто-то просто любит делать то, что делает. И необходимо понять, что и в таком случае термин карьеры применим и работает.

Я работаю чайным мастером – веду китайскую чайную церемонию. Работа творческая. Я занимаюсь этим уже 5 лет и недавно задумалась над тем, что прошло уже немало времени, а я как будто никуда не двигаюсь. Осознавать такое грустно, особенно если работа нравится. Какова же была моя радость, когда я прочитала, что есть не только классический вертикальный способ карьерного роста, но и горизонтальный – вглубь профессии. Ведь это именно то, что происходит у меня! Думаю, наша профессия и не имеет особых вертикальных перспектив. А куда двигаться? Становиться управляющим? Но зачем, если это не интересно! Интересно заваривать чай, вести беседы с гостями, а не заниматься административной работой. И все эти пять лет я, естественно, совершенствовалась в профессии, набирала опыт, расширяла границы. Теперь я уверена, что время не потрачено даром, и я двигаюсь, но не вверх, а вглубь. Елизавета,