Что такое цифровое производство? Цифровые технологии улучшают принципы бережливого производства.

В статье обсуждаются вопросы модернизации отечественного высокотехнологичного машиностроения на основе методов моделирования и прогнозирования развития цифровых производств. Прогноз развития цифровых производств основан на разработке комплексных дорожных карт. Построение дорожных карт включает определение ресурсного, информационного и организационно-методического обеспечения. Результатом работы является выделение перечня критических информационных и производственных технологий с целью существенного повышения производительности труда в машиностроении

Ключевые слова: цифровое производство, дорожная карта, производственные технологии, моделирование производства

Список использованных источников

1 Григорьев С.Н., Кутин А.А., Долгов В.А. Принципы построения цифровых производств в машиностроении. Вестник МГТУ «Станкин», 2014, № 4 (31), с. 10-15.

2 Григорьев С. Н., Кутин А. А. Создание цифровых производств эффективный путь повышения производительности труда в машиностроении. Технология Машиностроения, 2015, № 8 с. 59-63.

3 Григорьев С. Н., Кутин А. А. Инновационное развитие высокотехнологичных процессов на основе интегрированных АСТПП. Автоматизация и современные технологии, №11, 2011,с. 23-29.

4 Вороненко В. П., Михайлов Е. В., Соколова Я. В. Применение имитационного моделирования при проектировании или реконструкции производственных участков. Вестник МГТУ «Станкин», 2015, № 3 (34), с. 29-33.

5 Вороненко В. П., Долгов В. А. Информационная модель базового производственно- технологического решения для адаптации технологического процесса к текущему состоянию системы предприятия. Вестник МГТУ «Станкин», 2011, № 3, с. 173-177.

6 Еленева Ю. Я., Карпов С. А., Лукашевич Е. В. Управление финансированием инновационного развития промышленных предприятий: концептуальная модель. Вестник МГТУ «Станкин», 2012, № 1 т. 2, с. 128-133.

7 Григорьев С. Н. Решение задач технологического перевооружения машиностроения//Вестник МГТУ Станкин. 2008. № 3. С. 5-9.

8 Асанов Р. Э., Косов М. Г., Кузнецов А. П. Оценка технического уровня мехатронных изделий. Вестник МГТУ «Станкин», 2013, № 1 (24), с. 60-65.

9 Мартинов Г. М., Мартинова Л. И. Формирование базовой вычислительной платформы чпу для построения специализированных систем управления. Вестник МГТУ «Станкин», 2014, № 1 (28), с. 92-97.

10 Соколов А. В., Чулок А. А. Долгосрочный прогноз научно-технологического развития России на период до 2030 года: ключевые особенности и первые результаты. Форсайт, 2012, Т. 6, № 1, с. 12-25.

11 Позднеев Б. М., Сутягин М. В., Куприяненко И. А., Тихомирова В. Д., Левченко А. Н. Новые горизонты стандартизации в эпоху цифрового обучения и производства//Вестник МГТУ «СТАНКИН». - 2015. - №4 (35). - С. 101-108.

12. Ковалев А. П., Коршунова Е. Д. Социально-управленческий и стратегический анализ конкурентоспособного современного российского предприятия//Вестник МГТУ «Станкин». - 2012. № 2 (21). С. 18-22.

15 технологий, которые надо реализовать российским заводам как можно быстрее, если они нацелены опередить иностранные предприятия в гонке конкурентоспособности четвертой промышленной революции.

Как российским производствам подготовиться к новому технологическому укладу? Что именно позволяет иностранным компаниям производить промышленное оборудование качественнее, быстрее, дешевле?

В течение последних 10 лет мы с командой, реализуя крупные промышленные проекты, отвечали на эти вопросы, работая в семи странах мира (Великобритания, США, Германия, Япония, Италия, Украина, Россия) на десятках международных машиностроительных предприятиях. Благодаря этой работе, мы провели детальный анализ подходов и технологий для обеспечения высокой степени конкурентоспособности современного международного производственного предприятия.

Вот 15 технологий, которые необходимо реализовать российским заводам как можно быстрее, если они хотят догнать и перегнать иностранные предприятия в гонке конкурентоспособности четвертой промышленной революции.

1. Системы управления информацией предприятий , Enterprise Information Management: EIM = PLM+MES+ERP. Именно в такой связке, с взаимной передачей данных они работают в международных компаниях с 90-х годов прошлого века, образуя централизованный цифровой информационный хаб, используемый на всех стадиях жизненного цикла производственного проекта: для цифрового конструирования, в цифровом цеху, в цифровой цепи поставок, логистике и цифровой адаптации под потребителя продукта при продажах и сервисном обслуживании. В последнее время как один из важных компонентов EIM, активно развиваются системы класса MDC – Manufacturing Data Collection российских производителей, обеспечивающие мониторинг средств производства с числовым программным управлением и сбор данных о загруженности станков. Накапливать, упорядочивать и управлять информацией на всех этапах жизненного цикла изделий сегодня еще важно и для постепенного перехода через машинное обучение (machine learning) к полностью автоматическому производству.


Сегодня в России ежегодно создаются новые цифровые производства

2. Конвергенция цифрового и физического в разрабатываемом продукте уже в эскизном проекте - но сначала необходимо навести порядок в хранении конструкторской и технологической документации, реализовав компонент 1. Уже сегодня ведущие производители на этапе конструирования механического оборудования продумывают и закладывают в конструкцию выпускаемого продукта способы его взаимодействия через защищенный промышленный интернет вещей с цифровыми системами управления.

3. Систематизация, накопление и защита нематериальных активов (НМА) и интеллектуальной собственности. Не обязательно в форме патентов, обязательно в форме секретов производства и ноу-хау. Не забывайте интегрировать НМА в хозяйственную деятельность компании, фиксируя их оценку в бухгалтерском балансе. Здесь все просто: одним из основных выгодоприобретателей четвертой промышленной революции является собственник и поставщик интеллектуального капитала. Если вы развиваетесь как производитель и не оформляете свою интеллектуальную собственность, вы лишаете себя этих выгод. Сегодня лидирующие компании и государства борются за построение конкурентной экономики знаний (knowledge economics) с основой в виде производства интеллектуальных продуктов - технологий, патентов, ноу-хау. Обеспечивая интеграцию в хозяйственную деятельность нематериальных активов, российские компании могут быть глобальными промышленными гигантами, даже не имея собственных заводов.

4. Цифровой реверс-инжиниринг . В качестве одной из наиболее успешных бизнес-стратегий международной экспансии машиностроительной компании сегодня на практике подтверждено развитие собственного сервисного центра за рубежом. Сервисная база или ремонтное предприятие создается рядом с потребителем, обученный персонал такой базы помогает ремонтировать изношенное оборудование потребителя через сканирование деталей и передает полученные в результате сканирования 3D модели к себе на домашнее предприятие для производства. В результате базы данных PDM систем международных глобальных производителей наполняются существующими составами изделий и конфигурациями работающего оборудования для последующего расширения производственных линеек этих глобальных компаний.

5. Инженерный анализ (CAE) как отдельное бизнес-направление, виртуальное прототипирование, численный виртуальный эксперимент, FEA и CFD. Цифровое моделирование работы выпускаемого вами оборудования также очень сильно влияет на сроки разработки и выпуска продукта. Различные способы моделирования – от физических процессов и отдельных сборочных единиц до технологических процессов и производства в целом широко используются во всех ведущих производственных предприятиях сегодня, обеспечивая их отраслевое лидерство . Очень хорошо по этому поводу высказался вице-президент Тесла по производству: «современное производство – это интеллектуальная машина, производящая другие машины. Вы должны собрать все данные завода. Вам необходимо понять процессы и как вы можете их улучшить. Когда у вас будет достаточно информации, будет несложно смоделировать все предприятие от начала до конца и понять ключевые точки воздействия и настройки завода» .

6. Цифровые двойники (полная информационная модель) выпускаемого продукта, продвижение и продажи через виртуальную реальность (VR) и сервиса с помощью дополненной реальности (AR). Зайдите на сайт Caterpillar. Видите продуктовую линейку? Чтобы показать, как работает это оборудование, презентовать и продать его шейхам, CAT больше не везет грейдер в OAЭ. CAT передает 3D модель грейдера в свое представительство и те показывают в очках виртуальной реальности в VR эту модель потенциальному покупателю. Оцените экономию на логистике. С помощью AR сервис-инженеры CAT, обслуживающие на базе математической модели с предиктивной аналитикой тот же грейдер, могут осуществлять «точечный» ремонт в полном соответствии со всеми инструкциями и актуальным состоянием именно запросившего обслуживание грейдера. Оцените перспективы сервиса как бизнеса для САТ.

7. Энергоэффективность предприятий , сертификация их по стандартам LEED, BREEAM и сокращение эксплуатационных затрат на 25% и более. Это непосредственно влияет на себестоимость продукции этих предприятий и снижает риски энергозависимости предприятий, риски изменения законодательства и др.

8. Трансфер технологий. Если вы оснастили свое нефтяное месторождение комплексом иностранного промышленного оборудования, сразу же начинайте думать о его производстве здесь. Даже не так. Запланировав приобретение значительного объема иностранного оборудования для оснащения вашего нефтяного месторождения, сразу планируйте и реализуйте трансфер технологий производства этого оборудования в России. Иначе в ходе эксплуатации этого оборудования вы быстро разоритесь на его сервисе (от 100 евро в час - стоимость европейского инженера), а через пять лет обнаружите себя собственником устаревшего хлама. Причем ваши соседи по отрасли, закупив через пять лет относительно вас у той же компании похожее оборудование, станут собственниками машин на пять поколений старше и эффективнее вашего, поскольку обновление продуктовой линейки раз в год - реальная практика современного международного машиностроителя. С ускоренным развитием технологий цифрового производства и сокращением сроков выпуска продукции ТРАНСФЕР ТЕХНОЛОГИЙ сегодня стал единственной возможностью выживания даже не производителя, а заказчика и эксплуатанта оборудования. При этом предприятия, сформировавшие объёмы интеллектуальных активов в PDM системах, могут начинать задумываться об их капитализации, включая трансфер (экспорт) технологий в развивающиеся страны и продажу лицензий на нематериальные активы (ноу-хау и интеллектуальную собственность).

9. Аддитивное производство для модельных испытаний и прототипирования. У вас еще нет 3D принтера или партнеров-студии 3D печати? Тогда - смотрите компонент 5 о цифровом моделировании - вы не сможете быть такими же быстрыми в разработке и выпуске новых продуктов, как международные производители.

10. Профессиональное управление проектами. Для обеспечения поставки сложных видов оборудования в срок, с запланированным финансовым результатом и с требуемым заказчиком качеством, ведущие производственные предприятия создают корпоративные системы управления проектами, обращаясь к лучшим практикам современного управления проектами и комбинируя Agile и Waterfall подходы к реализации проектов.

11. Бережливое производство (lean) во всех его проявлениях и порядок в цехах с разработкой и внедрением сильной производственной системы. Огромное количество цехов в России – не отвечающие экологическим стандартам, неухоженные помещения с хаотично накиданным инструментом на верстаках под слоем стружки. Неужели кто-то думает, что в таких условиях возможно произвести конкурентоспособный продукт? Оптимизация планировки цеха, стандартизация производственного процесса, повышение эффективности работы оборудования – важные слагаемые роста производительности труда современного завода.

12. Выход подсистем системы управления информацией предприятий (PDM, MES, MDC) на автоматизированные рабочие места (АРМ) производственных участков. За 10 лет выросло поколение, для которых дисплей привычнее листа бумаги. Молодые слесари-сборщики будут эффективно работать с цифровым интерфейсом состава изделия на АРМ сборочных участков, пользуясь интерактивными электронными техническими руководствами. Операторы станков ЧПУ эффективно используют цифровые ассистенты выполняемых технологических процессов, включающих базы знаний нормативно-справочной информации. Управление производственными процессами, анализ их узких мест и ограничений, принятие управленческих решений на основе этого анализа начальник цеха ведет из главной диспетчерской, пульта управления производством, оборудованной дисплеем, на который поступают видеосигналы со всех производственных участков и информация об их производительности (пример – цех «Высота 239» ЧТПЗ).

13. Учебные производственные центры на вашем предприятии и развитие фаблаба в регионе работы предприятия. Популяризация цифрового производства через проведение мастерских с рассказом о работе современных инженеров, 3D печати, робототехники. Участие молодых цеховых специалистов в WorldSkills, EuroSkills. Европейское предприятие, открывшее завод в России, имеет несколько таких центров, оборудованных образцами продукции для проведения тренингов персонала и партнеров компании.

14. Цифровое управление логистикой , в том числе с использованием RFID индентификации, с контролем передвижения сырья и материалов, очень важно для обеспечения конкурентоспособности производства сегодня. Максимальная автоматизация управления складскими запасами, цифровые системы отбора материальных запасов со световой индикацией (умные полки, pick-by-light), когда информация по заданию на подбор материалов высвечивается на интегрированном в полку дисплее, при подключении к MES, на продвинутых производствах с умными командами на порядок увеличивают производительность при пропорциональном уменьшении затрат на логистику .

15. Кросс-отраслевая кооперация , взаимодействие с партнёрами в профессиональных ассоциациях, проведение аудита качества других компаний для организации технологического партнерства.

Активизация обмена ресурсами, возможностями и потребностями в том числе через уже существующие онлайн-инструменты. Использование эффекта платформы, когда цифровые производители создают сети, соединяющие продавцов и покупателей, повышая доходы за счет эффекта масштаба . Пример – кооперация компаний Hewlett-Packard, National Instruments, PTC и Flowserve , которые объединились для совместного выпуска насосных агрегатов, управляемых и обслуживаемых с помощью технологий промышленного интернета вещей и предиктивной аналитики. Российский пример – кооперация Yandex Data Factory и Магнитогорского металлургического комбината, создавших с помощью алгоритмов машинного обучения математическую модель производства стали для оптимизации расхода ферросплавов и добавочных материалов .

Почему сегодня так важно опираться на эти работающие производственные технологии в гонке конкурентоспособности четвертой промышленной революции?

Давайте посмотрим на произошедшее в последние годы. В продукте и в средствах производства доказала свою эффективность радикальная конвергенция цифрового и физического. В разработке – если предприятие не выпускает новую модель продукта ежегодно в условиях быстрого и тесного цифрового мира, оно проигрывает конкурентам. В производстве – увеличились эффективные возможности для безлюдного производства, поэтому цеховой персонал постепенно замещается операторами цифровых технологических процессов, как десять лет назад токари и фрезеровщики начали замещаться операторами станков с ЧПУ. В сервисе продукта – распространяются технологии предиктивной аналитики как серьёзной конкурентной силы и связи продукта с его разработчиком (см. пример Тесла). Да, эти технологии рождены десятки лет назад. Но любая революция – это окончательное разрушение старой технологической платформы критической массой новых технологий, эволюционно развивающихся долгие годы. Наивно было бы предполагать, что промышленная революция происходит, когда абсолютно новая технологическая платформа в миг меняет цифру 3 на 4. Лучший пример революционного продукта, полученного эволюционным путем – Тесла и, если спроецировать технологическую новизну этого продукта (и средств его производства) на другие отрасли и продукты, становится ясно, что смена технологического уклада действительно происходит.

Промышленная революция происходит через трансформацию средств производства и продукта, разрабатываемого и производимого этими инструментами. Как следствие – кардинальный рост производительности труда, скорости выпуска продукта и его качества.

О любой технологии (IoT, AR, VR, Big Data) можно сказать «мы это делали 10, 20, 30 лет назад». Но не единичные практики создают промышленную революцию, а формирование (в том числе через отраслевую кооперацию, компонент 15, и образовательные инициативы, компонент 13) системы технологий, радикально влияющей на производительность труда, скорость выпуска продукции и создающей новые виды экономической деятельности. С этой точки зрения снобистская позиция «эти технологии -ничего нового, лишь маркетинговые названия» на наступление новой промышленной революции никакого влияния не оказывает.

Что нужно сделать, чтобы современные компоненты производственных систем и технологии заработали на российских производствах?

Нам необходимо оставить технологический снобизм, перенять опыт развития восточных предприятий и их руководителей, которые как губка впитывают лучшие мировые практики. Искать и работать с такими практиками на конференциях, форумах, референс-визитах в передовые производственные компании, в общении с инженерными и производственными консультантами. В организационной структуре наших предприятий необходимо обеспечить плотное сотрудничество подразделений ИТ и НИОКР с совместными разработками новых продуктов и модернизацией существующих. Работать с вендорами и интеграторами информационных систем, в свою очередь динамично развивающимися синхронно с технологиями и предлагающими комплексные решения автоматизации всего жизненного цикла производимой продукции.

Цифровое производство - продукт четвертой промышленной революции, которая наделила машины определенным искусственным интеллектом. Важнейшей ее предпосылкой стал Интернет, благодаря которому технические устройства могут передавать друг другу информацию. Неудивительно, что наибольших успехов Индустрия 4.0 пока добилась в производственной сфере, которая всегда зависела от автоматизации. По данным ПАО «Ростелеком», более 60% российского рынка Интернета вещей (IoT) занимают именно промышленные разработки. Ниже мы рассмотрим, какие сегодня существуют решения для промышленного Интернета вещей (IIoT) и как и когда мы сможем перейти к цифровому производству.

Единое информационное пространство предприятия

Необходимым условием для организации на промышленном предприятии цифрового производства является создание единого информационного пространства, с помощью которого все автоматизированные системы управления предприятием, а также промышленное оборудование могут оперативно и своевременно обмениваться данными.

Обычно рассматривают четыре уровня автоматизации:

Автоматизация на первых трех уровнях осуществляется с помощью систем контроля и управления производством. Технологический уровень и уровень проектирования - это автоматизированная подготовка производства. Таким образом, единое информационное пространство предприятия работает по определенной схеме. Чертеж и трехмерная модель изделия разрабатывается в CAD-системе. Коллективная работа над изделием, отслеживание версий и состава изделия, а также технологическая проработка осуществляется в PDM-системе. Далее КТС (конструкторско-технологическая спецификация) изделия передается в ERP-систему, где на ее основе рассчитывается потребность в материалах, производственных мощностях, формируются заказы на закупку и производство. Составление графика загрузки оборудования, планирование изготовления деталей выполняются в MES-системе.

Пирамида из описанных выше систем должна базироваться на фундаменте из объективных данных о работе оборудования и персонала. На большинстве предприятий сейчас для этого используются журнальные методы, что противоречит концепции цифрового производства и подвергает сомнению объективность данных. Поэтому пятый и ключевой элемент данной структуры, который является отправной точкой для цифрового производства, - это системы класса MDC (Machine Data Collection), обеспечивающие автоматический мониторинг работы оборудования, персонала, технологии, контроль изготовления деталей.

Интеграция всех систем позволяет автоматизации стать реальной производительной силой и охватить все предприятие - от технологов-операторов до высшего руководства.

MDC как связующее звено информационного пространства

MDC, или системы мониторинга, позволяют собирать данные о работе всех производственных объектов (оборудование, рабочие места основных рабочих, сервисные службы и т. д.) в целях управления производством и повышения его эффективности. Как это работает? Для современных станков с ЧПУ разрабатываются программы протоколов мониторинга, обеспечивающие получение подробной информации о состояниях станка и происходящих на нем изменениях. Для подключения старого оборудования используют специальные терминалы-регистраторы. Они передают на сервер данные о том, сколько станки работали, сколько простаивали, каковы причины простоев и др.

Для руководства это инструмент контроля и принятия управленческих решений, а для отдельных служб предприятия - инструмент повышения эффективности производственного процесса. В большинстве случаев системы мониторинга выполняют функцию посредника между оборудованием и системами управления производством. В этом и заключается суть IIoT. Однако система мониторинга может также включать в себя различные дополнительные модули, частично дублирующие функционал «больших» систем управления. Например, помимо базового мониторинга некоторые системы могут контролировать производство, управлять простоями, контролировать энергоэффективность.

В России MDC-системы стали появляться буквально пару лет назад. За рубежом у предприятий намного более внушительный опыт внедрения таких решений. У нас же все еще существует проблема недостатка информации - пока далеко не все владельцы и руководители производств понимают, какие задачи они смогут решить с помощью систем мониторинга.

Анализировать полученные данные и оценивать экономический эффект внедрения управляющие компании начали только в 2015 г., так как первые пилотные проекты, среди которых АО «Редуктор-ПМ», АО РКЦ «Прогресс», ФГУП УЭМЗ«, были запущены в 2012-м. Так что, по нашим прогнозам, нужно еще два-три года, чтобы донести до людей необходимость автоматизации, перехода на цифровое производство, повышения эффективности работы предприятий, в конце концов.

Во всех случаях внедрения систем мониторинга был получен положительный экономический эффект. С ростом эффективности использования имеющегося оборудования (благодаря получению объективных данных и правильным управленческим решениям на их основе) - предприятие оптимизирует производственный процесс и экономит деньги за счет сокращения машинного времени и времени персонала. В итоге у предприятия появляются дополнительные резервы времени для производства продукции.

Сейчас в России действует целевая программа перевооружения, в рамках которой государственным предприятиям выделяются средства на модернизацию, что также должно ускорить внедрение элементов Индустрии 4.0.

Системы мониторинга - это первый шаг к цифровому производству, который необходимо сделать для вступления в новую фазу промышленности. После того, как будут увеличены коэффициенты загрузки оборудования, сокращены простои, оптимизированы графики работы, а также после повышения дисциплины на предприятиях процесс создания единого информационного пространства пойдет быстрее и проще. А это основное условие эффективного и оперативного управления финансово-хозяйственной и производственной деятельностью предприятия.