Создание интерактивной презентации. Нелинейные и интерактивные презентации

Сейчас аппаратура быстро устаревает. Всё, что остаётся не у дел, надо снова пускать в дело!
Например, механизмы приводов компакт-дисков применимы для постройки сверлильного станка.

Нам потребуется:
1) Кусок ДСП, лучше ЛДСП - станок должен быть красивым
2) Два механизма от CD привода
3) Уголок 25×25 … 35×35 из алюминия или дюралюминия Д16-Т, некритично
4) Труба прямоугольная 15×30 (размер важен)
5) Электродвигатель диаметром 25 мм, с максимально возможным количеством оборотов в минуту, например, типа ДПМ-25
6) Кнопка любая
7) Сверло перовое 25 мм
8) Винты М3 с гайками, саморезы
9) Кусок древесины, желательно твёрдых пород, отлично подходит 12 мм фанера - 12×27х30…50 мм

Итак, приступаем.
Размеры станка определяйте сами, они будут зависеть от максимального размера плат, которые вы будете изготавливать, плюс расстояние от механизмов до центра.
В механизмах CD приводов удалите электродвигатель привода диска, лазерную головку. Прямоугольная труба становится вместо лазерной головки идеально.


В прямоугольную трубу плотно вставьте 2 куска древесины длинной по 30-50 мм на клею или дополнительно закрепите саморезами.

В в верхней стенке прямоугольной трубы по центру просверлите отверстие 25 мм, в нижней стенке отверстие для вала двигателя.


Закрепите двигатель.

Закрепите оба механизма саморезами на прямоугольной трубе. В куске ЛДСП сделайте 2 пропила, закрепите всё это на куске ЛДСП. Сверху закрепите уголок с кнопкой S2 (см. схему).

Несколько крупных белых светодиодов освещают рабочую поверхность.


Трансформатор питания можно применить на 20-30 Ватт, напряжение вторичной обмотки зависит от вашего двигателя.

Конструкция «педали» понятна из фотографии. Два отрезка ДСП, мебельная петля и микропереключатель.

Перекос не возникает, после подъёма происходит выравнивание автоматически, у меня после годовой эксплуатации ни разу перекоса не было, двигатели подъёма вращаются синхронно.

Цангу закрепляю на двигателе и винтами юстирую до минимальных биений , т.к. твёрдосплавные свёрла при малейших биениях ломаются.
Мне удалось выставить практически без биений.

С изобретением станков человечество серьезно продвинулось в сфере производства различного рода деталей и механизмов. Станки стали настоящим подспорьем для любого, кто намеревается обрабатывать металлы, дерево и любые другие материалы.

Ведь эти устройства изначально предназначаются для выполнения довольно специфических работ, которые по-другому вам качественно выполнить не удастся.

К такому оборудованию относится и сверлильный станок для печатных плат, что используется в электромеханике и смежных производственных сферах.

1 Общая информация

Любой станок – это специальный прибор, который собирают из нескольких составляющих. Задача этого прибора заключается в придании человеку возможности обработать тот или иной инструмент с большой точностью. То есть практически исключить из процесса конкретно ручной труд.

Это совершенно необходимо в работе, где нужна точность. Если при этом используется деталь из металла или любого точного материала, то без использования станка вам будет просто не обойтись.

Станок состоит из станины, переходников, установки под движок и еще нескольких механизмов. Все они собираются в единую конструкцию, что жестко зафиксирована в одном или нескольких положениях.

Стандартные и самые дешевые станки или мини-станки, если мы говорим об оборудовании, что предназначается для обработки миниатюрных деталей, могут перемещаться только по одной оси. То есть перемещение рабочего сверла выполняется сверху вниз. Это базовая функция станка, без которой его и станком назвать-то нельзя.

Более продвинутые модели можно точно настраивать на определенную координату, которая выставлена на столе. Это уже могут быть даже полуавтоматические или автоматические модели.

Как вы сами понимаете, именно четкая фиксация на прочной раме и возможность практически исключить человеческий фактор непосредственно в выполнении работ по сверлению – это основной плюс станков.

1.1 Особенности станков для печатных плат

Станки для печатных плат – это одна из разновидностей подобного оборудования. Вот только такие агрегаты, как правило, являются мини-образцами. И это вполне очевидно, ведь работать на них необходимо с печатными платами.

Для тех, кто не знаком с электротехникой проясним, что печатные платы – это по сути основания для любой микросхемы или электронной мини-цепочки. Практически каждый прибор в своей конструкции имеет хотя бы одну печатную плату. В особенности это касается приборов, что работают на электричестве.

Для образования единых стандартов в электротехнике и создания устойчивого основания были введены печатные платы. Производят их из диэлектрика, на который прикручивают или припаивают различного рода детали и соединения.

Плата может содержать на себе как мелкий транзистор и вывод к нему от элемента питания, так и огромное количество деталей, столь миниатюрных, что неподготовленный человек их даже не рассмотрит (речь идет о компьютерном оборудовании).

Конечно, в данной ситуации стоит отметить огромное количество печатных плат, что различаются по своей конструкции, используемому материалу и т.д. Но отметим, что все они являются разновидностью одного элемента, что выполняет функции основания для микросхем.

Простейшие платы оборудуют дополнительными элементами за счет их прикручивания и последующей пайки. Как вы сами понимаете, для прикручивания деталей необходимо проделать в плате отверстия.

Причем проделывать надо их с филигранной точностью. Расхождение даже в полмиллиметра может быть если не фатальным, то очень ощутимым. Особенно если вы собираетесь заполнить плату полностью.

Чего только стоит тот факт, что сверла для мини-станка по печатным платам в своем диаметре могут начинаться от образцов в 0,2-0,4 мм. И это если говорить о дешевых станках. Более продвинутое оборудование для создания сложных микросхем будет использовать еще более миниатюрные инструменты.

Как вы сами понимаете, обрабатывать подобные детали вручную – дело не из легких. Даже если вам и получится сделать парочку отверстий в нужном месте и нужной толщины, то займет этот процесс слишком много времени, а результат может быть испорчен единственной ошибкой.

Использовав же станок для печатных плат, работа существенно упрощается и становится практически механической. Равно как и повышается ее производительность. Да и конструкция такого оборудования сложностью не отличается, поэтому создать его можно своими руками.

2 Конструкция станка

Конструкция мини-станка для обработки печатных плат имеет довольно простую схему. По сути, этот станок мало чем отличается от стандартных сверлильных моделей, только он намного меньше и имеет несколько нюансов. Практически всегда мы рассматриваем настольный сверлильный мини-агрегат, так как он будет иметь размеры, что редко превышают отметку в 30 см.

Если рассматривать самодельный образец, то он может быть чуть больше, но только за счет того, что человек, который собирал его своими руками, просто не смог оптимизировать конструкцию должным образом. Такое бывает, если под руками попросту не находится подходящих деталей.

В любом случае станок, даже если он собран своими руками, будет иметь небольшие габариты и весить до 5 килограмм.

Опишем сейчас непосредственно конструкцию станка, а также детали, из которых его надо изготовить. В качестве основных составляющих при сборке мини-устройства для сверления плат используют:

  • станину;
  • переходную стабилизирующую рамку;
  • планку для перемещения;
  • амортизатор;
  • ручку для манипуляций с высотой;
  • крепление для движка;
  • движок;
  • блок питания;
  • цангу и переходники.

2.1 Разбор конкретных деталей

Обратимся теперь к конкретным деталям, что уже были названы выше, а также дадим рекомендации по их подбору.

Для начала отметим, что мы сейчас описываем самодельный станок, который по сути можно собрать из подручных средств. Конструкция заводских образцов отличается от описанной нами только применением специализированных материалов и деталей, которые в домашних условиях создать практически невозможно. Придется покупать.

Начинается самодельный мини-станок, равно как и любой другой станок, со станины. Станина выполняет функции основания, на ней держится вся конструкция, на нее же монтируют поддерживающую деталь, на которой крепится обрабатываемая плата.

Станину желательно делать из тяжелой металлической рамки. Вес ее должен быть больше, чем вес всей остальной конструкции. Причем расхождение может быть довольно внушительным. Только так вы добьетесь стабильности агрегата во время работы. Особенно это касается моделей, что собираются своими руками.

И не стоит обманываться, когда видите приставку мини. Мини-станок – это такой же станок, и он все так же требует качественной стабилизации. Под станину часто прикручивают ножки или что-то подобное, чтобы дополнительно зафиксировать ее положение.

Стабилизирующая рамка является креплением для всего механизма. Ее делают из рейки, уголка или чего-то подобного. Предпочтительно использовать деталь. Планка для перемещения может быть самой разнообразной конструкции и часто совмещается с амортизатором. Иногда, амортизатор и сам является планкой для перемещения.

Эти две детали выполняют функции вертикального смещения станка во время работы. Благодаря им, станок можно быстро и без лишних усилий эксплуатировать.

Вариантов решений для выполнения таких деталей есть очень много. Начиная от самодельных или снятых с офисной мебели раздвижных реек на пружине, до профессиональных амортизаторов масляного типа.

Ручка для манипуляций крепится непосредственно к корпусу станка, амортизатору или стабилизирующей рейке. С ее помощью можно осуществлять давление на конструкцию, опуская и поднимая ее по своему желанию.

К стабилизирующей рамке уже прикрепляют планку для двигателя. Это может быть даже обычный деревянный брусок. Его задача – вывод движка на нужное расстояние и его надежная фиксация.

Движок монтируют на крепление. В качестве движка тоже можно пользоваться огромным количеством деталей. Начиная от дрели, и заканчивая движками, что сняты с принтеров, дисководов и другой офисной техники.

К движку цепляют цанги и переходники, которые будут основание для крепления сверла. Тут уже можно дать только общие рекомендации, так как переходники всегда подбираются индивидуально. Влияние на их выбор окажет вал двигателя, его мощность, тип используемого сверла и т.д.

Блок питания для мини-станка подбирается такой, чтобы он мог обеспечивать движок нужным напряжением в достаточных количествах.

2.2 Технология сборки станка

Теперь обратимся к общему алгоритму, по которому ведется сборка агрегата для сверления печатных плат своими руками.

Этапы работы:

  1. Монтируем станину, крепим к ней ножки.
  2. Устанавливаем рамку держателя основной конструкции на станину.
  3. Крепим к рамке механизм перемещения и амортизатор.
  4. Монтируем крепление для движка, как правило, оно фиксируется на рамку перемещения.
  5. Устанавливаем ручку на крепление для двигателя.
  6. Устанавливаем движок и регулируем его положение.
  7. Прикручиваем к нему цангу и переходники.
  8. Монтируем блок питания, подключаем его к движку и сети.
  9. Подбираем и фиксируем сверло.
  10. Тестируем работу механизма.

Все соединения и их тип можете подбирать по своему усмотрению. Однако рекомендуется использовать болты и гайки, чтобы иметь возможность в нужный момент разобрать конструкцию, заменить ее составляющие или улучшить всю схему действия станка.

2.3 Самодельный станок для сверления печатных плат (видео)

С момента изобретения станка производство различных механизмов и деталей значительно продвинулось. Теперь они являются настоящими помощниками человека, занимающегося обработкой металлов, пластмасс, дерева и других материалов.

Данные устройства позволяют выполнять довольно специфические работы на более качественном уровне.
К данному типу оборудования можно отнести и самодельный сверлильный станок для печатных плат, используемый в радиоэлектронике и смежных областях.

Станки для печатных плат

Печатные платы являются основой всех микросхем. Она предназначена для механического и электрического соединения разных электронных компонентов.
Производят такие платы из диэлектрического материала, на который в последствии и устанавливаются все элементы микроэлектроники.

На платы устанавливаются транзисторы, тиристоры и др. микроэлектроника, т.е. большое количество миниатюрных деталей, которые трудно рассмотреть не вооруженным глазом.

На самые простые платы добавляют дополнительные элементы, путем их прикручивания с последующей пайкой. Естественно для того, чтобы прикрутить элементы, необходимо в плате просверлить отверстия. Проделывать такие отверстия необходимо с ювелирной точностью. При расхождении даже в пару сотен микрон может быть очень ощутимым или же привести к браку изделия, если вы собираетесь расположить на плате большое количество электронных компонентов.

Любители радиоэлектроники часто занимаются изготовлением печатных плат, в которых требуется сверлить большое количество отверстий малого диаметра. Сверление мелких отверстий, диаметром 0,5-1,0 мм, с использованием классического настольного сверлильного, дрели или шуруповерта, является не очень удобным занятием, в ходе которого легко поломать сверло. Как следствие, производить сверление микроотверстий в печатных платах целесообразно при помощи специализированного мини сверлильного станка, с использованием твердосплавных сверл, диаметром 0,7-0,8 мм.
Использование мини сверлильного станка значительно упрощает работу, делая её практически механической, повышая тем самым производительность труда. При этом конструкция не отличается особой сложностью, по этим причинам многие предпочитают собирать их своими руками.
Таким самодельным сверлильным мини станком можно сверлить как печатные платы, так и любые другие заготовки, однако из-за конструкции станка есть ограничения по глубине отверстия.

Конструкция

На первый взгляд схема кажется сложной, однако, это не так. По сути, мини станок не сильно отличается от классического, он меньшего размера с некоторыми нюансами в схеме компоновки конструкции.

Так как данное оборудование обладает не большими размерами, его стоит рассматривать как настольное.
Самодельный вариант оборудования обычно слегка больше, чем покупной, из-за того что при сборке своими руками не всегда есть возможность оптимизировать конструкцию подобрав малогабаритные комплектующие. Но и в таком случае самодельный станок будет иметь малые габариты и вес не более 5 кг.

Видео по сборке

Элементы сверлильного станка

Чтобы собрать мини устройство своими руками, вам потребуется следующее:

  1. Станина;
  2. Переходная стабилизирующая рамка;
  3. Планка для перемещения;
  4. Амортизатор;
  5. Ручка-регулятор высоты;
  6. Крепление для двигателя;
  7. Двигатель;
  8. Цанга (или патрон);
  9. Переходники.

Стоит отметить, что мы описываем самодельный мини сверлильный станок, собираемый из подручных средств своими руками. Заводская конструкция отличается использованием специализированных узлов, которые изготовить собственноручно практически невозможно.
Основой сверлильного мини агрегата, как и любого другого, является станина. Она выполняет функцию основания, на которой будут держаться все узлы. Станиной может являться подручное устройство, например: скелет микроскопа; стойка для проведения линейных измерений цифровым индикатором.

А можно изготовить самому, например легкую деревянную станину – соединив дощечки саморезами, либо же тяжелую и устойчивую – приварив стальной профиль к металлическому листу. Лучше когда вес станины выше основного веса остальных узлов, это позволяет повысить устойчивость агрегата и снижает его вибрацию во время работы.

В качестве двигателя для могут послужить электродвигатели от: кассетных магнитофонов, принтеров, дисководов и другой офисной техники. В качестве крепления для сверл выбирается патрон или цанги. Однако патрон более универсальный, цанга же предусматривает установку сверл только определенных размеров.

Еще одна интересная схема на основе запчастей от CD-ROM и фена с автоматической регулировкой частоты вращения двигателя в зависимости от нагрузки.

Самодельная станина

При изготовлении стальной станины своими руками, под нее можно прикрутить ножки, для фиксации её положения.
Стабилизирующую рамку можно изготовить, например, из рейки или уголка, при этом лучше применять сталь.
Вид планки для перемещения можно подобрать любой, наиболее удобный, при этом лучше совместить её с амортизатором. В некоторых случаях, амортизатор может сам быть такой планкой. Функции этих деталей заключаются в вертикальном смещении оборудования во время работы.
Амортизатор можно изготовить самому или снять с офисной мебели раздвижные рейки, либо прибрести в магазине.
Ручка-регулятор высоты устанавливается на корпус, стабилизирующую рейку или амортизатор.
Крепление для двигателя устанавливают к стабилизирующей рамке, ею может быть, например, простой деревянный брусок. Она нужна для вывода двигателя на нужное расстояние и его надежной фиксации.
Затем двигатель устанавливают непосредственно на крепление.
К двигателю непосредственно присоединяют патрон или цанги, к которым крепятся переходники, используемые для установки сверл. Переходники подбираются индивидуально, в зависимости от вала двигателя, его мощности, типа сверл и т.п.
В заключении можно сказать, что собранный сверлильный мини станок, можно постоянно дорабатывать в ходе эксплуатации. Например, можно наклеить на патрон светодиодную ленту, для подсветки просверливаемых образцов.

В этой статье мы поделимся с вами разработанным нами станком для сверления печатных плат и выложим все материалы, необходимые для самостоятельного изготовления этого станка. Все что понадобится, это распечатать детали на 3D-принтере, порезать фанеру лазером и закупить некоторые стандартные комплектующие.

Описание конструкции

В основе конструкции довольно мощный 12ти вольтовый двигатель из Китая. В комплекте с двигателем они продают еще патрон, ключ и десяток сверел разного диаметра. Большинство радиолюбителей просто покупают эти двигатели и сверлят платы удерживая инструмент в руках.
Мы решили пойти дальше и на его основе сделать полноценный станок с открытыми чертежами для самостоятельного изготовления.

Для линейного перемещения двигателя мы решили использовать полноценное решение — полированные валы диаметром 8мм и линейные подшипники. Это дает возможность минимизировать люфты в самом ответственном месте.

Основная станина сделана из фанеры толщиной 5мм. Фанеру мы выбрали потому, что стоит очень дешево. Как материал, так и сама резка. С другой стороны ничего не мешает (если есть возможность) просто вырезать все те же самые детали из стали. Некоторые мелкие детали сложной формы напечатаны на 3D-принтере.
Для поднятия двигателя в исходное положение использованы две обычные канцелярские резинки. В верхнем положении двигатель сам отключается при помощи микропереключателя.
С обратной стороны мы сделали место для хренения ключа небольшой пенал для сверел. Пазы в нем имеют разную глубину, что делает удобным хранение сверел с разным диаметром.

Впрочем, все это проще увидеть на видео:

Детали для сборки


Сборка

Весь процесс сборки записан на видео:

Если следовать именно такой последовательности действий, то собирать станок будет очень просто.
Вот так вот выглядит полный набор всех комплектующих для сборки:

Помимо них для сборки потребуется простейший ручной инструмент. Отвертки, шестигранные ключи, плоскогубцы, кусачки и т.д.
Перед тем начинать собирать станок желательно обработать напечатанные детали. Удалить возможные наплывы, поддержки, а также пройти все отверстия сверлом соответствующего диаметра. Фанерные детали по линии реза могут пачкать гарью. Их можно также обработать наждачной бумагой.
После того, как все детали подготовлены начать проще с установки линейных подшипников. Они закрадываются внутрь напечатанных деталей и прикручиваются к боковым стенкам:

Теперь можно собрать фанерное основание. Сначала боковые стенки устанавливаются на основание, а затем вставляется вертикальная стенка. В верхней части также есть дополнительная напечатанная деталь, которая задает ширину в верхней части. При закручивании винтов в фанеру не прикладывайте слишком большое усилие.

В столике на переднем отверстии необходимо сделать зенковку, чтобы винт с головой впотай не мешал сверлить плату. С торца также установлена напечатанная крепежная деталь.

Теперь можно приступить к сборке блока двигателя. Он прижимается двумя деталями и четырьмя винтами к подвижному основанию. При его установке необходимо следить, чтобы отверстия для вентиляции оставались открытыми. На основание он закрепляется при помощи хомутов. Сначала вал продевается в подшипник, а затем на нем защелкиваются хомуты. Также установите винт М3х35, который в будущем будет нажимать на микропереключатель.

Микропереключатель устанавливается на прорези кнопкой в сторону двигателя. Позже его положение можно будет отклибровать.

Резинки накидываются на нижнюю часть двигателя и продеваются до "рогов". Их натяжение надо отрегулировать так, чтобы двигатель поднимался до самого конца.

Теперь можно припаять все провода. На блоке двигателя и рядом с микропереключателем есть отверстия для хомутов, чтобы закрепить провод. Также этот провод можно провести внутри станка и вывести с обратной стороны. Убедитесь, что припаиваете провода на микропереключателе к нормально замкнутым контактам.

Осталось только поставить пенал для сверел. Верхнюю крышку нужно зажать сильно, а нижнюю закрутить очень слабо, используя для этого гайку с нейлоновой вставкой.

На этом сборка окончена!
Из доработок вы можете проклеить фанерные детали, для увеличения жесткости. Можно также сделать регулятор оборотов двигателя.


Когда то давно в начале 80-х была у меня сверлилка для п/плат на базе ГДР - овского электродвигателя и маленького патрона от дрели на 1 - ом конусе Морзе.
Тип мотора не сохранился но схема была срисована в тетрадку.
В те годы домашних компьютеров не было, и все интересные схемы и мозговые изыскания заносили в общие тетради в клеточку, по 96 листов, стоимостью 44 копейки.

Схема работала по алгоритму: маленькая нагрузка – патрон крутится медленно, возрастает нагрузка – патрон крутится быстрее. Очень удобно было использовать для сверления отверстий в п/платах, попал в кернение - обороты возросли.
Лет прошло много, сверлилка давно канула в вечность. Недавно озадачился проблемой сверления отверстий в п/платах. В связи с отсутствием таких транзисторов (особенно П-701) пришлось переводить схему на современные детали:

П/плата универсальная: есть КТ972 - ставим его и перемычку от базы в эмиттер маленького транзистора, нет КТ972 - ставим КТ315 и аналог КТ805, как на фото.
Еще одна схема сложилась в голове другого автора: Edward Nedeliaev (https://www.cqham.ru/smartdrill.htm). На эту ссылку натолкнулся после недельных неудачных попыток заставить схему работать с мотором типа ДПМ. Хотя как нам известно из классики, что один хомосапиенс собрал, то другой хомосапиенс завсегда разобрать сможет. Как выяснилось с ДПМ моторами схема не работает, ей видите ли подавай только двигатели серии ДПР.

Но ДПР мотора нет и покупать его желания не возникает,зато есть вот такая коробочка и ковырялочка из неё.

С этого места начинается лабораторная работа на тему "Подбери управление КОВЫРЯЛОЧКОЙ для П/ПЛАТ". На просторах интернета полно разных схем, простых и не очень простых для управления моторами сверлилок для п/плат. Рассмотрим некоторые наиболее распространённые из них:
1. регулятор на транзисторах без применения микросхем (серия К142ЕН игнорируется)
2. регулятор на транзисторах и микросхемах.
3. регулятор на транзисторах и микроконтроллере.
4. регулятор напряжения (пропустим, он мало интересен для применения в рассматриваемых целях и задачах)

Первой попробуем схему А. Москвина, г. Екатеринбург:



Схема отлично выполняет свои функции и обязанности:
1. сенсорно управляется (пуск/регулировка/стоп)
2. изменяет обороты
3. тормозит двигатель
4. настройки практически не требует

Если в качестве сенсора применить разделённую пополам площадку размером с 1 копеечную монету, то приложением пальца очень удобно включать и регулировать обороты двигателя.
В журнале “Радио” за 2009 год была другая схема, для ДПМ моторов. Придумал её С. Саглаев, г. Москва. Мне пришлось изменить некоторые номиналы под свой мотор.



Схема работает достаточно хорошо, но как-то задумчиво. Возможно это связано с имеющимся у меня двигателем.

Вторыми для опытов возьмём так называемые ШИМ регуляторы.
Вариантов схем превеликое множество и авторов просто легион. По этой причине имена и фамилии героев здесь не приводятся.




Схемы работают, но скорее подходят для управления оборотами вентилятора с коллекторным двигателем. Более приемлемые параметры для сверлилки имеют схемы на таймере NE-555:




Одно из схемотехнических решений - применение обратной связи. На форуме “Арсенала” (https://www.foar.ru) позаимствованы две таких схемы:






Эти варианты схем достойны внимания и повторения. Следует отметить что вариант с диодом КД213 удостоился чести быть установленным в корпус, и занял пустующее место в серой коробочке наряду с ковырялочкой и свёрлами. Вероятно, простые так называемые ШИМ регуляторы, скорее всего подходят для стационарной сверлилки типа этой:

Следующий на очереди - микропроцессорный вид сверлилок. Запад как обычно нам помог в схемотехническом решении: https://mondo-technology.com/dremel.html Делал эту схему года три назад, в качестве подопытного кролика выступил убитый Dremel. Внутри был установлен импортный двигатель на 24 вольта и запитан от этой схемы:


Замечательно работающая получилась конструкция, используется на работе до сих пор и заслуживает только похвальных отзывов. Кстати отверстия в п/платах на фотографиях сделаны именно ей.
Как вариант для сверлилки опробовалась схема на ATtiny13 (автор hardlock, https://www.hardlock.org.ua/mc/tiny/dc_motor_pwm/index.html):



Симпатичная и неплохо работающая конструкция, но хочется снова подчеркнуть что она скорее подходит для стационарной сверлилки.

И в завершение конструкция, которая покорила своей повторяемостью и удобством использования. Придумал и реализовал схему в далёком 1989 году болгарин Александър Савов.