Советские радиолокаторы. Радиолокационные станции: история и основные принципы работы

Ряд выдающихся ученых и инженеров в СССР вел успешные разработки радиолокационных систем. Первые опыты по использованию РЛС в Советском Союзе относятся к началу 1930-х годов, а первая советская РЛС была принята на вооружение в 1939 году. В годы советско-финской войны мобильными РЛС было обеспечено полное перекрытие воздушного пространства на подступах к Ленинграду. После начала Великой Отечественной войны РЛС играли важную роль в противовоздушной обороне Москвы, Ленинграда и нефтепромыслов Кавказа. В СССР было налажено массовое производство наземных, авиационных и корабельных РЛС, которые ни в чем не уступали, а по некоторым параметрам и превосходили зарубежные аналоги.

История развития радиолокации в СССР

В 1929 году Научно-технический комитет Военно-технического управления РККА инициализировал работы решению задачи обнаружения самолетов противника. После неудачных попыток создания приемника теплового излучения и опытов по улавливанию электромагнитного излучения от системы зажигания (магнето) авиадвигателей стало очевидно, что единственным доступным способом обнаружения самолетов является прием отраженных радиосигналов. В октябре 1933 г. ГАУ поручило ЦРЛ провести исследование возможности обнаружения самолетов с помощью отраженных радиоволн дециметрового диапазона. Была сконструирована установка, состоящая из радиопередатчика непрерывного излучения, работавшего на волнах 50-60 см мощностью 0,2 Вт, суперрегенеративного приемника и параболических антенн диаметром 2 м. В декабре 1933 г. были завершены все подготовительные работы, и аппаратура была перевезена на территорию Гребного порта у Кроншпица Галерной гавани Ленинграда.

Зенитный радиоискатель «Буря»

3 января 1934 г. был проведен успешный опыт по обнаружению сигналов от гидросамолета, при движении самолета на расстоянии 600-700 метров от аппаратуры в приемнике фиксировался доплеровский сдвиг частоты . Данный эксперимент позволил ГАУ продолжить работы по созданию радиообнаружителей самолетов.
22 октября 1934г. УПВО РККА заключило с радиозаводом им. Коминтерна в Ленинграде договор на разработку первой серии опытных станций радиообнаружения самолетов под условными наименованиями "Вега" и "Конус" для комплекса ПВО "Электровизор" . Разработка велась под руководством Павла Кондратьевича Ощепкова. "Вега" предназначалась для дальнего обнаружения и работала на волнах длиной 3,5–4 м. "Конус" позволял определить азимут и дальность в ближней зоне до 15 км. Позже в комплекс "Электровизор" была включена импульсная РЛС "Модель-2" , но дальнейшее их развитие было прекращено из за ареста Ощепкова и прекращения финансирования со стороны РККА.
В 1935 году удалось повысить дальность обнаружения модернизированной установки до 9 км. Третья установка, с магнетронным передатчиком, разработанная под кодовым названием "Енот" , обнаруживала самолеты на дистанции 11 км, но работала нестабильно. Одновременно с ЦРЛ, аналогичные работы велись в ЛЭФИ . Летом 1935 года в ЛЭФИ была построена экспериментальная установка радиообнаружения самолетов с двумя параболическими антеннами диаметром 2 м, которые могли вращаться в горизонтальной и вертикальной плоскостях. Испытания показали, что установка способна обнаруживать легкий самолет У-2 на дальности 5-6 км. По результатам испытаний опытный завод института изготовил подвижный двухантенный зенитный радиоискатель "Буря" , который имел дальность обнаружения 10-11 км. Дальнейшие работы по совершенствованию радиоискателя были продолжены в НИИ-9 НКТП , который образовался за счет слияния ЛЭФИ с Радиоэкспериментальным институтом.

Экспериментальная зенитная станция радиообнаружения "Рубин"

В 1937 году была создана установка РИ-4 с расчетной дальность 25 км. Но арест ряда руководителей НИИ-9 значительно затормозил дальнейшее развитие радиолокационной техники. Институт в основном занимался теоретическими разработками, в частности, было предложено осуществлять сканирование с помощью двух взаимно не соосных антенн для получения V-луча, который позволял бы получать координаты цели в трехмерном пространстве дальность-азимут-высота. Тем не менее, в 1939 году в НИИ-9 были созданы экспериментальные зенитные радиоискатели Б-2 и Б-3 с дальностью действия 14 и 17,5 км соответственно. Серийное производство этих радаров должно было начаться 1 апреля 1941 года. В конце 1939 года был разработан радиодальномер "Стрелец" , который позволял обнаруживать самолеты на удалении до 20 км. Его развитием стал радиобнаружитель "Луна" , который состоял из азимутального обнаружителя "Мимас" и модифицированного дальномера "Стрелец". Эскизный проект был готов в начале 1941 года, но начавшаяся война и блокада Ленинграда не позволили проводить дальнейшие разработки в НИИ-9.

Разработки радиообнаружителей велись также в харьковском УФТИ , где была создана установка "Зенит" , работавшая на волнах длиной 64 см и при мощности 10-12 кВт имевшая дальность обнаружения до 30 км. В 1940 году в УФТИ была создана зенитная станция радиообнаружения "Рубин" , которая обладала повышенной точность определения координат. Серийное производство "Рубина" также не было начато из за начавшейся войны.

РЛС СССР

Наземные РЛС

РУС-1 "Ревень"

Передающая (слева) и приемная машины РУС-1 "Ревень"

В 1936 году работы по созданию радаров были сконцентрированы в Научном исследовательско-испытательном институте связи Красной Армии (НИИС КА), куда перешел работать освобожденный к тому времени Ощепков. Главной разработкой института совместно с ЛФТИ стала система радиообнаружения линейного типа для охраны государственных границ - система "Ревень" (РУС-1) . В основу системы была положена разработка ЛЭФИ "Рапид", испытанная в 1934 году. Система состояла из одной передающей машины и пары приемных, которе должны были располагаться на удалении 30-40 км от передающей. Передающая станция создавала в стороны приемных направленное излучение в виде сплошной завесы, при пересечении которой самолеты обнаруживались приемными станциями по биениям прямого и отраженного сигналов. В 1937-1938 годах система прошла успешные испытания и НИИС КА получил заказ на изготовление первой партии из 16 комплектов "Ревень". В сентябре 1939 года система "Ревень" была принята на вооружение войск ПВО под названием РУС-1. Первое боевое применение РУС-1 произошло в ходе советско-финской войны, когда станции были установлены для организации ПВО Ленинграда. Всего было выпущено 45 комплектов РУС-1, которые были размещены главным образом в Закавказье и на Дальнем Востоке.

РУС-2 "Редут"

Передающая (слева на шасси ГАЗ-ААА) и приемная машины РУС-2

В 1936 году в ЛФТИ по заданию НИИС КА начались работы по установке "Редут" . В отличии от РУС-1, новая установка должна была не просто выявлять факт наличия самолета, но и определять его азимут, скорость и дальность. Весной 1937 года опытный экземпляр установки обнаружил самолет на удалении 10 км, а через год, когда удалось создать более мощный передатчик, дальность обнаружения была доведена до 50 км. В 1939 году дальность обнаружения была доведена до 95 км. В 1939 году "Редут" был испытан в Севастополе и с его помощью удалось обнаруживать корабли на удалении до 25 км, но работа на берегу усложнялась высоким уровнем помех из за переотражений. 26 июля 1940 года "Редут" был принят на вооружение под наименованием РУС-2 . Как и большинство советских довоенных РЛС, РУС-2 выпускался в мобильном варианте и состоял из 3 фургонов, установленных на автомобильном шасси: электрогенератора и приемника, смонтированных на шасси ГАЗ-ААА и передатчика на шасси ЗиС-6. Приемная и передающая кабины были оснащены синхронизированным приводом вращения. В период 1940-1945 годов было выпущено более 600 станций РУС-2 различных модификаций.
Помимо автомобильной установки, выпускался также вариант РУС-2с "Пегматит" , размещенный на двух прицепах.
Из за дефицита автомобилей в 1940 году был разработан одноантенный вариант РУС-2 "Редут-41" , в котором передатчик и приемник помещались на общем шасси.
В 1943 году установки РУС-2М стали комплектоваться системой опознавания "свой-чужой". После модернизации РЛС получили обозначения П-1 , П-2 и П-2М соответсвенно.

"Река" и "Рассвет"

Начатые в 1939 году и не завершенные из за начала войны разработки ЛФТИ РЛС обнаружения ("Река" ) и наведения ("Рассвет" ). Кроме этих станций, планировалась разработка в 1942 году станции "Редут-Д" с дальностью обнаружения до 300 км.

П-3

в 1943 году была инициирована разработка станции раннего предупреждения и наведения перехватчиков П-3 . При мощности 100 Квт на волне 4,15 м новая станция должна была обеспечивать дальность обнаружения не менее 130 км, а дальность определения координат для наведения перехватчиков - не менее 70 км. В августе 1944 года станция П-3 успешно прошла испытания и передана в производство, при этом выпуск всех модификаций РУС-2 был прекращен.

Стационарные наземные РЛС

Памятник на месте размещения радиолокационного полигона в Тосково.

У нас в Советском Союзе, в России первые отечественные радиолокационные станции были реально созданы в 1939 году. Первая опытная установка радиообнаружения самолетов была создана в Ленинградском физико-техническом институте. Ее установили на двадцатиметровой вышке в поселке Токсово. На ней отрабатывались варианты конструкции ряда функциональных устройств создаваемых радиолокационных станций (РЛС). В этот же период времени в этом же Институте был создан и мобильный вариант первого нашего отечественного радиолокатора. Он получил условное наименование "РУС-2" и был направлен в Москву на государственные испытания… Это произошло, примерно, в середине 1938 года.

Что предшествовало этому?

Этому предшествовало создание в 1937-1938 г.г. системы радиообнаружения самолетов типа "РУС-1" - "РЕВЕНЬ". Аббревиатура расшифровывается так: "РадиоУловитель Самолетов".

Система РУС-1 по существу и по принципиальным признакам не являлась радиолокатором. По аналогии с существовавшими в то время ЗвукоУлавливателями, систему радиообнаружения назвали РадиоУловитель Самолетов. Не очень удачное название, т.к. звук уловить можно, а "уловить" самолет, каким бы то ни было способом, не представляется возможным. Система РУС-1 - это система радиообнаружения самолетов, перелетающих условную линию, образованную длиннннной цепью станций типа РГО и РПО.

…РПО-РПО <- РГО -> РПО-РПО <- РГО -> РПО-РПО <- РГО -> РПО-РПО…

Расшифровка аббревиатур: РГО – РадиоГенератор-Обнаружитель, РПО – РадиоПриемник-Обнаружитель.

Станция РГО работала в режиме непрерывного излучения высокочастотных колебаний. Каждая РГО была оснащена двумя направленными антенными системами. С ней были связаны две станции РПО, антенные системы которых были направлены на "свою" РГО. Совокупность станций РГО - РПО, устанавливаемых в линию, образовывала в охраняемом воздушном пространстве, как бы, "радиозабор" – нечто сходное со "следовой полосой", которая в то время строилась вдоль всей линии государственной границы Советского Союза - от одной пограничной заставы к другой. Не следует думать, что этот "радиозабор" должен бы быть строго прямолинейной конструкцией. "Радиозабор" мог быть образован и в виде некой "ломаной линии", повторяя линию государственной границы. Все зависело от устанавливаемого угла направленности антенных систем соответствующих сопряженных РГО и РПО. Для этого, в частности, станции РПО устанавливались парами.

Факт пересечения каким-либо самолетом "радозабора" между какой-либо из РГО – РПО фиксировался на соответствующей РПО по факту возникновения в приемном устройстве допплеровских биений прямого радиосигнала, принятого от "своей" РГО, и радиосигнала, отраженного от летящего самолета и принятого здесь же приемным устройством.

Фиксация факта перелета линии границы осуществлялась по появлению сигнала звуковой частоты на выходе приемного устройства соответствующей станции РПО. Эти звуковые колебания могли быть зафиксированы и на бумажной ленте автоматического самописца. Никаких данных о самолетах нарушителях (количество самолетов, высота, курс и т.п.) станции РПО обнаруживать не могли.

Все станции системы РУС-1, которые в Ленинградском военном округе начали устанавливать вдоль линии границы с Финляндией с апреля 1941 года, должны были передавать свои донесения по телефонным линиям связи или по радио непосредственно на ГП ВНОС, расположенный в Ленинграде.

Система РУС-1 предназначалась для охраны неподвижной линии государственной границы. При пересечении вражеским самолетом линии государственной границы СССР на станции РПО соответствующего участка охраняемой линии границы должны были уловить этот факт перелета и по радио сообщить о нем на Главный Пост ВНОС по принадлежности. Все станции системы РУС-1, которые в Ленинградском военном округе начали устанавливать вдоль линии границы с Финляндией с апреля 1941 года, должны были передавать свои донесения по телефонным линиям связи и по радио на ГП ВНОС, расположенный в Ленинграде. Фиксация факта перелета линии границы осуществлялась по появлению сигнала звуковой частоты на выходе приемного устройства соответствующей станции РПО. Эти звуковые колебания могли быть зафиксированы и на бумажной ленте автоматического самописца. Никаких данных о самолетах нарушителях (количество самолетов, высота, курс и т.п.) станции РПО определять не могли.

Первым отечественным импульсным радиолокатором явилась радиолокационная станция (РЛС) типа РУС-2, аббревиатура названия которой неправомерно унаследована от системы РУС-1. Это был самый первый отечественный импульсный радиолокатор, принятый на вооружение в конце лета 1940 года. Именно на первом опытном образце этой РЛС, который после окончания государственных испытаний под Москвой был отправлен в 28-й Радиополк ВНОС в г. Баку, автор этих строк обучался работе старшего оператора.

Здесь в 28 Радиополку ВНОС в учебной роте полковой школы готовили специалистов для эксплуатации систем РУС-1. Для обучения работе на радиолокаторах типа РУС-2 в учебной роте был создан спецвзвод. Вся информация о радиолокаторах типа РУС-2 была строго засекречена. В те годы процесс обучения в этом спецвзводе был организован так, что о РЛС типа РУС-2 в других взводах учебной роты никто не мог знать ничего. В конце марта 1941 года автор этих строк был аттестован, как старший оператор станции РУС-2. В первых числах апреля 1941 года всю нашу учебную роту эшелоном переправили в Ленинградский военный округ.

13 апреля 1941 года в Советском Союзе были созданы войска ПВО. В это же время в Ленинградском военном округе был создан 72-й Отдельный Радиобатальон ВНОС, на вооружение которого должны были поступать станции системы РУС-1 и в дальнейшем РЛС типа РУС-2.

Станции РГО и РПО системы РУС-1 стали поступать в нашу часть уже во второй половине апреля 1941 года. Их сразу же укомплектовывали боевыми расчетами и направляли для развертывания к местам дислокации вдоль линии советско-финляндской границы.

Первые два серийных радиолокатора типа РУС-2 были получены в наш 72 Отдельный Радиобатальон ВНОС прямо с завода-изготовителя через 5-6 дней после начала Отечественной войны.

Радиолокатор типа РУС-2 состоял из двух аппаратных кабин. Две небольшие кабины (приемная и передающая) были смонтированы на автомобильном шасси типа ЗИС-5 с возможностью кругового вращения. На крыше каждой из кабин была установлена антенная система. В передающей кабине располагался передатчик высокочастотных импульсов. В приемной кабине располагался приемник и индикаторное устройство. Вся работа по обнаружению целей происходила в приемной кабине. Передающая кабина в своем вращении строго синхронно и синфазно следовала за приемной, как собачка на поводке так, что ее антенная система всегда была направлена в ту же сторону, что и антенная система приемной кабины.

В приемной кабине было два рабочих места. Рабочее место оператора телефониста располагалось у левого окна, которое во время работы всегда было закрыто брезентовой шторой. Рабочее место старшего оператора было в центре кабины, над токосъемником. В небольшой кабине было тесновато. Если во время работы в кабину входил инженер РЛС, то ему приходилось неподвижно стоять за спиной старшего оператора у входной двери кабины. Долго так стоять в неудобной позе было трудно. Убедившись, что аппаратура работает нормально, он быстро уходил. Не каждый из операторов мог выдержать почти непрерывное круговое вращение и рыскание кабины при пеленгации целей в течение долгих четырех часов дежурства. На меня это круговое вращение кабины никак не сказывалось, и я полностью отдавался работе. Моим помощником оператором-телефонистом в то время был Павел Шакалов. Во время работы он чувствовал себя плохо - его укачивало. После смены, после четырех часов непрерывного кругового вращения (один оборот кабины в минуту), мне приходилось вести его в землянку отлеживаться…

Радиус действия радиолокатора РУС-2 не превышал 120-150 км. Экран индикаторного устройства был выполнен на электронно-лучевой трубке с белым цветом свечения. Наблюдать за экраном нужно было через узкую продольную щель в фронтальной панели пульта управления. Цели на экране индикаторного устройства выглядели, как белая узкая вертикальная полоска на темном фоне линии развертки. (яркостная модуляция!). Координаты цели определялись в системе "азимут-расстояние". По характеру засветки импульса цели и его мерцанию можно было определить одиночный самолет, пару и тройку. Далее можно было определить "много".

В конце июля или в первых числах августа 1941 года прямо на боевой позиции под Нарвой радиолокатор "РУС-2" нам заменили на новейший радиолокатор типа "РЕДУТ", который пригнали к нам прямо с завода буквально сразу же после окончания его изготовления. Это был самый, самый первый радиолокатор типа "РЕДУТ"!

Радиолокатор типа "РЕДУТ" по своей технической сущности является нашим первым полномасштабным отечественным импульсным радиолокатором дальнего обнаружения. По новизне, использованной в нем совокупности новых технических решений, по составу аппаратуры, по техническим возможностям и внешнему виду он никак не являлся усовершенствованным вариантом первого отечественного импульсного радиолокатора типа РУС-2. Создание в 1941 году радиолокатора типа "РЕДУТ" и его практическое использование в начальный период Отечественной войны выводило в то время Россию на передовые позиции в мире в области создания радиолокаторов дальнего обнаружения самолетов. Однако, по соображениям сохранения строжайшей секретности на наши новейшие технические решения патентов не испрашивали и потому юридически доказать приоритет России в создании и практическом использовании этого вида вооружения теперь, очевидно, уже невозможно.

Иной раз в соответствующей литературе высказывается такое мнение, что радиолокатор типа "РЕДУТ" является несколько усовершенствованным вариантом радиолокатора типа РУС-2. Это ошибочное мнение! По составу функциональных устройств, по ряду новых прогрессивных технических решений, реализованных в радиолокаторе типа "РЕДУТ", по надежности, по удобству в эксплуатации и дальности уверенного обнаружения целей ему, надо полагать, в то время (в 1941 году) не было равного в мире! Радиолокатор "РЕДУТ" по существу являлся новой, более высокой ступенью, в развитии отечественной радиолокации.

Вся аппаратура на "РЕДУТЕ" располагалась в одном типовом неподвижном аппаратном фургоне, закрепленном на шасси грузового автомобиля ЗИС-5. Во время работы вращалась только одна антенная система на крыше фургона. Одна и та же антенная система использовалась для передатчика и для приемника. Отключение приемника от антенны на время генерации передатчиком мощного зондирующего радиоимпульса осуществлялось специальным высокочастотным разрядником. Радиус уверенного обнаружения целей радиолокатором "РЕДУТ" достигал 200 - 210 км. Однажды (в 1942 году) на РЛС "РЕДУТ-7" уходящую цель вели наблюдением до 270 км. На радиолокаторе типа "РЕДУТА", как и в радиолокаторе РУС-2, еще не было индикатора кругового обзора. Картина воздушной обстановки в зоне обзора складывалась в голове старшего оператора по мере кругового вращения антенной системы. Старший оператор обязательно должен был обладать способностью пространственного (объемного) мышления и иметь хорошую память. Наблюдая на экране импульсы целей, он должен был мысленно представлять себе реальную воздушную обстановку. Хороший старший оператор мог помнить координаты (азимут - расстояние) 4 - 5 целей, количество самолетов в каждой из целей, направление их движения и некоторые индивидуальные особенности целей, если таковые имелись. Если целей было больше 4 - 5, то приходилось периодически посматривать и на планшет-картоплан. На планшете под листом прозрачного плексигласа была закреплена карта местности – Ленинград и окружающие его районы. Карта была разделена на квадраты с кодированными номерами.. На поверхность плексигласа оператор-телефонист наносил отметки целей обычными чернилам, обыкновенной перьевой ручкой. Фломастеров в то время не было.

Экран электронно-лучевой трубки индикаторного устройства на "РЕДУТЕ" был полностью открыт для старшего оператора. Цели на экране наблюдались в зеленом свечении в виде вертикальных пульсирующих импульсов, пересекающих горизонтальную линию развертки (амплитудная модуляция!), Зеленое свечение экрана лучше воспринималось глазами старших операторов.

Именно потому, что в приемном устройстве сигналы целей на промежуточной частоте не детектировались, а после усиления подавались прямо на электронно-лучевую трубку (амплитудная модуляция!), на радиолокаторе "РЕДУТ" оказалось возможным, оценивая структуру импульсов и характер их пульсаций на экране, точно определять количество самолетов – один, двойка, тройка. Такой способ показа целей на экране радиолокатора, как я полагаю, был реализован у нас в России впервые в мире, но никаких доказательств этому у меня нет. США пошли несколько по иному пути. У них в радиолокаторах к этому времени уже были индикаторы кругового обзора.

Определение количества самолетов в групповых целях не предусматривалось разработчиком. В соответствии с Инструкцией по эксплуатации, если в группе было более трех самолетов, количество самолетов в группе следовало называть "Много".

Методика точного определения количества самолетов в группах родилась у меня в сознании буквально в первые же дни после того, как я сел на свое рабочее место за экран индикаторного устройства радиолокатора "РЕДУТ". Видимо в этом проявился уже большой опыт работы, приобретенный в реальных боевых условиях на радиолокаторе РУС-2.

В конце июля 1941 года РЛС типа "РЕДУТ", введенная в эксплуатацию на нашей "точке" взамен радиолокатора РУС-2, была первой и единственной на всем Ленинградском фронте. С того времени нашу "точку" стали называть "РЕДУТ-3". С того же времени стационарному радиолокатору, установленному на вышке в пос. Токсово было присвоено наименование "РЕДУТ-1". Несколько позднее радиолокатор типа РУС-2, дислоцированный на Карельском перешейке в пос. Агалатово, тоже заменили на радиолокатор "Редут" и он получил условное наименование "РЕДУТ-2". .

Когда я впервые после РУС-2 сел за экран на "РЕДУТЕ", я сразу почувствовал, что это новая техника прекрасна! Даже сравнивать ее с РУС-2 невозможно было!

К тому времени опыт боевой работы у меня, как старшего оператора РЛС, уже был немалый. С большим увлечением я занялся определением точного количества самолетов в групповых целях. Буквально в первые же дни после практического знакомства с "РЕДУТОМ" я усмотрел в нем возможность точного определения количества самолетов в групповых целях. На разработку соответствующей методики, на практическую проверку ее эффективности у меня ушло дней 7 -10. Естественно, что я не делал никакого секрета из этой моей методики. Рассказал о ней моим друзьям-товарищам - сменным старших операторам нашего "РЕДУТА-3".

Все это происходило в начале августа 1941 года под Нарвой. С того времени мы стали успешно использовать ее в нашей повседневной работе. В последующие дни крупная группировка немецких войск из под Котлов и Кингисеппа, преодолев упорное сопротивление наших войск, начала быстрое продвижение к Ленинграду. Чтобы мы с нашей секретнейшей техникой не оказались под Нарвой в глубоком немецком тылу, по приказу командования нашего 72-го ОРБ ВНОС мы свернули нашу станцию и двинулись к Ленинграду… С первых чисел сентября мы, РЛС "РЕДУТ-3", дислоцировались уже на "Ораниенбаумском пятачке" в дер. Большая Ижора. Наши донесения о движении самолетов противника мы передавали по радио на Главный Пост ВНОС в Ленинград и по прямому проводу непосредственно на командный Пункт ПВО КБФ.

Во время вражеских налетов на корабли и Кронштадт 21- 23 сентября 1941 года я успешно пользовался этой своей методикой и точно (+-2 самолета в группе из 70 самолетов) определял количество самолетов во всех группах. В дальнейшем, уже после Кронштадтского Сражения об этой моей методике прослышали и в Ленинграде, в штабе нашего батальона. Потому в самом конце октября или даже в начале ноября 1941 года меня решили отозвать с "РЕДУТА-3" в батальон для того, чтобы я ознакомил с этой методикой других старших операторов нашего батальона. Я же об этом ничего не знал и не понимал для чего меня вдруг вызвали с боевой "точки" в Ленинград.

Добраться с "Ораниенбаумского пятачка" в Ленинград в то время было совсем непросто. Для этого из Большой Ижоры, где мы располагались, я на попутном транспорте добрался в Ораниенбаум, а затем катером в Кронштадт. Оттуда ночью в Ленинград отправлялся караван кораблей. Впереди шел ледокол "Тазуя". Я находился на другом кораблике (названия уже не помню) где-то ближе к голове каравана. У Петергофа фарватер простреливался немцами. Скажу правду – я очень боялся. Было очень страшно. Вокруг лед. Плавать я не умел и не умею… Тонуть очень не хотелось… До нас тут вчера немцы потопили буксир и баржу. На барже с "пятачка" в Ленинград переправляли госпиталь… Погибли много раненных и персонал госпиталя. Мне и сейчас (Мороз по коже!!!) страшно вспоминать все это. Одно дело – погибнуть в бою. Совсем другое дело быть расстрелянным невидимым противником и утонуть в ледяной воде, не имея возможности даже выстрелить в сторону противника…

Ярко светила Луна, но еще до подхода к траверзу Петергофа Луна зашла за горизонт. Стало темно. Немцы зажгли прожектор и его луч положили на воду так, что он пересекал фарватер. Незаметно проскочить было невозможно. Но вот над прожектором вдруг появился наш "Кукурузник" У-2 и луч прожектора поднялся вверх. С самолета обстреляли прожектор и его луч погас. В это время головная часть нашего каравана проскочила опасный участок пути. Потом, когда немцы снова зажгли прожектор, последние корабли нашего каравана уже покидали опасную зону. По ним немцы открыли огонь из орудий крупного калибра, но существенных потерь наш караван не понес. Так я благополучно добрался до Ленинграда. Только здесь, в штабе нашего батальона я узнал для чего, собственно, меня вызвали в Ленинград. Командир нашего батальона капитан Б.К. Бланк захотел, чтобы я поделился своим опытом работы с другими старшими операторами нашего батальона. Мне это "хотение" командира батальона вполне могло стоить жизни!… К ноябрю 1941г. у нас в батальоне уже были созданы "РЕДУТЫ" № 4, № 5. В штабе батальона в ноябре 1941 года я несколько раз проводил беседы со старшими операторами "РЕДУТОВ" № 1, № 2, № 4 и № 5, которых специально для этих бесед поочередно вызывали в штаб батальона. По ходу этих бесед рассказывал о своей методике определения количества самолетов в группах и рисовал на бумаге картинки импульсов разных целей, отвечал на все вопросы старших операторов. Командир батальона капитан Б.К. Бланк был очень доволен мною и перед строем объявил мне благодарность. Таким образом, с ноября 1941 года, моя методика точного определения самолетов в групповых целях стала использоваться почти всеми старшими операторами нашего батальона, а имя автора этой методики, как у нас тогда водилось, было позабыто. Моя методика стала достоянием всего батальона и жила уже сама по себе... Я воспринимал это, как должное.

"Операторы "Редутов" быстро освоили приемы определения количества самолетов в группе по характеру пульсаций отраженных импульсов. Помню рядового Г.И. Гельфенштейна с "Редута-9", который особенно хорошо проявил себя в этом тонком деле и редко ошибался"…

В конце января 1942 года на какое-то время я был включен в состав боевого расчета новой РЛС – "РЕДУТ-9". Эту станцию по Дороге Жизни вывозил на Волховский фронт, в Волховский дивизионный район ПВО, командир роты молодой старший лейтенант Сергей Николаевич Скворцов… Помню, как он иной раз долго, час-полтора, молча стоял у меня за спиной и смотрел как я работаю. Потом молча хлопал меня по плечу и уходил из аппаратной. Он так и не узнал тогда, что именно я и являлся автором методики точного определения самолетов в групповых целях…

В конце лета 1942 года по решению командования нашего батальона я был отозван с "РЕДУТА-9" в Ленинград.

Г. Гельфенштейн

Юрий Борисович Кобзарев , академик, заведующий отделом Института радиотехники и электроники АН СССР . Специалист в области статистической радиотехники и теории колебаний, основатель советской школы радиолокации. Награжден золотой медалью им. А. С. Попова , присуждаемой Академией наук СССР за выдающиеся научные работы и изобретения в области радио. Герой Социалистического Труда . Лауреат Государственной премии СССР .

3 января 1934 г. в Ленинграде на небольшой специально построенной установке были зарегистрированы отраженные от самолета радиоволны. С этого дня, который можно считать днем рождения советской радиолокации, начались интенсивные исследования, направленные на решениe задачи обнаружения самолета и точного определения его местоположения.

Идея радиолокации немногим моложе идеи радиосвязи. Еще в 1905 г. был ыдан германский патент X. Хюльсмейеру о заявке от 30 апреля 1904 г. Идея развивалась и в других заявках, многие из которых очень интересны. Так, в 1919 г. был выдан патент Л. Махтсу , в котором описывалось устройство со спиральной разверткой и визуальной индикацией положения обнаруживаемого с помощью радиоволн объекта. Однако из-за несовершенства излучающих и принимающих устройств того времени возможностей практического осуществления предложенных идей не было.

Первой публикацией, в которой описывались опыты по определению положения отражающего радиоволны объекта, можно считать статью Е. Эппльтона и М. Барнета . В этих опытах производилось измерение высоты ионосферы (слоя Кеннели — Хевисайда ) путем наблюдения интерференции радиоволн, распространяющихся вдоль поверхности Земли, и волн, отраженных от ионосферы. Результирующая напряженность поля периодически менялась при изменении длины волны (вследствие изменения разности фаз этих волн), что и позволяло определить высоту ионосферы.

Периодическое изменение величины сигнала, являющееся результатом наложения сигнала, отраженного летящим самолетом, наблюдалось в опытах Б. Тревора и П. Картера , исследовавших распространение ультракоротких радиоволн. По-видимому, в их статье 1933 г. содержится первое упоминание об отражении самолетом радиоволн. В ней говорится: «...самолет, пролетающий над полем, обусловливал хорошо выраженные вариации приема. Отраженный от самолета сигнал попеременно усиливал и ослаблял прямой луч передатчика. Это явление было особенно заметно, когда расстояние между передатчиком и приемником составляло 800 м. Интерференционные явления, обусловленные самолетом, были сильнее, когда самолет пролетал ближе к приемнику, но были заметны и в том случае, когда самолет находился на лин,ии передатчик — приемник» .

Примененный Эппльтоном и Барнетом метод варьирования частоты излучаемых колебаний и до настоящего времени является одним из основных методов измерения расстояний, применяемых в радиолокационных устройствах. Альтернативный метод основан на измерении времени запаздывания Dt отраженного импульса по отношению к излученному. Расстояние r до отражающего объекта определяется в этом случае с помощью простого соотношения

где с — скорость света. Этот чрезвычайно наглядный (когда для измерения Dt используется электронно-лучевая трубка) метод был впервые применен также при определении высоты ионосферы. В дальнейшем он получил широкое развитие при ионосферных исследованиях, имеющих большое значение для техники связи на коротких волнах. В радиолокации он играет главенствующую роль.

Начало работ. Непрерывное или импульсное излучение?

До 30-х годов в противовоздушной обороне для определения местоположения самолетов использовались звуковые пеленгаторы, позволявшие с хорошей точностью определять направление прихода звука, излучаемого мотором самолета, и оптические дальномеры. Такая система — ее называли "прожзвук«- могла использоваться только при безоблачном небе, но и тогда ее эффективность была ничтожна, так как пилот, попав в луч прожектора, мог резко изменить курс и сделать результат расчета прибора, управляющего зенитным огнем, непригодным. При увеличившихся скоростях самолетов и высоте их полета направление прихода звука и направление на самолет стали так сильно различаться, что система «прожзвук» оказалась вообще недееспособной. Необходимость создания, принципиально новых средств для обнаружения самолетов стала очевидной. За организацию соответствующих работ взялись Главное артиллерийское управление (ГАУ ) и Управление противовоздушной обороны (УПВО ).

Представитель ГАУ М. М. Лобанов обратился непосредственно в Центральную лабораторию бывшего Треста заводов слабого тока, располагавшую сильной производственной базой. Был заключен договор (октябрь 1933 г.), и под руководством Ю. К. Коровина начались работы по созданию установки для наблюдения отраженных самолетом радиоволн дециметрового (50—60 см) диапазона. В январе 1934 г. состоялся первый испытательный полет. Самолет обнаруживался на расстояниях до 700 м при ничтожной (0,2 Вт) мощности излучения. Установка состояла из двух параболических зеркал диаметром 2 м: одно служило для излучения радиоволн, другое — для приема. Прием велся с помощью суперрегенеративного приемника на слух. Эффект Доплера приводил к возникновению биений между прямым и отраженным от самолета излучениями, которые и прослушивались в телефоне.

Опыты Ю. К. Коровина убедили, что пеленгование самолетов с помощью радиоволн возможно и что работы в этом направлении надо развивать. С этой целью М. М. Лобанов обратился в Ленинградский электрофизический институт (ЛЭФИ ), которым руководил А. А. Чернышев . Это был один из институтов «куста» физико-технических институтов, идейно возглавлявшегося А. Ф. Иоффе. 11 января 1934 г. был подписан соответствующий договор между ГАУ и ЛЭФИ. Под руководством Б. К. Шембеля весьма энергично стали вестись исследования по совершенствованию техники дециметрового диапазона, и уже к концу 1934 г. в ГАУ был отправлен эскизный проект радиопеленгатора, в котором для повышения дальности действия предлагалось использовать магнетронный генератор. Работы в этом направлении получили дальнейшее развитие в ЛЭФИ и ЦВИРЛ (Центральной военно-индустриальной лаборатории ) и велись вплоть до начала Великой Отечественной войны .

В это же время представитель УПВО П. К. Ощепков обратился к президенту Академии наук СССР А. П. Карпинскому с просьбой о содействии в постановке работ по радиообнаружению самолетов. Президент направил его к А. Ф. Иоффе , живо откликавшемуся на всякую свежую мысль. 16 января 1934 г. Абрам Федорович созвал весьма компетентное совещание, которое высказалось в пользу целесообразности подобных исследований. А. А. Чернышев взялся организовать работы по применению радиоволн для обнаружения самолетов на дальних подходах в своем институте — ЛЭФИ. Руководство ими было также поручено Б. К. Шембелю .

Работы для УПВО были развернуты в ЛЭФИ очень быстро. Уже в начале июля 1934 г. были проведены первые успешные опыты с простейшей аппаратурой, работавшей на волне около 5 м. Регистрация сигналов от самолетов, находящихся на расстоянии до 7 км, велась на самописце.

Несмотря на то, что дальнейшие опыты, проведенные в марте 1935 г. с уже усовершенствованной аппаратурой, показали, что возможно значительное увеличение дальности обнаружения, работы в ЛЭФИ в этом направлении были заказчиком прекращены. К этому времени в УПВО был создан Опытный сектор с лабораториями в Москве и Ленинграде, а радиопромышленности были даны заказы на разработку мощного УКВ-генератора непрерывного действия и соответствующих приемных устройств для задуманной Ощепковым системы дальнего обнаружения («Электровизор »),

В 1935 г. ЛЭФИ был расформирован. Его помещение, кадры и оборудование были переданы в распоряжение вновь организованного института (НИИ-9), которому поручили разработку новой важной оборонной тематики, включавшей и радиолокацию. Научным руководителем нового института был назначен создатель и руководитель знаменитой Нижегородской радиолаборатории (к тому времени уже прекратившей свое существование) М. А. Бонч-Бруевич .

М. А. Бонч-Бруевич, хорошо знавший работу радистов-"слухачей" времен первой мировой войны, считал, что наиболее перспективной является акустическая индикация принимаемых сигналов. Действительно, способность радистов «выуживать» нужные сигналы из невероятной какофонии звуков — смеси сигналов многих станций, образовывавшейся из-за недостаточной селективности приемников того времени,- поражала воображение. Поэтому в НИИ-9 было отдано решительное предпочтение технике непрерывного излучения. Работа была направлена на создание радиопеленгаторов взамен акустических пеленгаторов системы «прожзвук». Особенно прельщало внешнее сходство этих систем, так что операторам даже не пришлось бы переучиваться.

При разработке систем непрерывного излучения возникло много трудностей, обусловленных близостью генератора зондирующих сигналов к приемнику, но руководство продолжало отдавать предпочтение этому методу, тем более что были достигнуты значительные успехи в создании передающих и приемных устройств дециметрового диапазона. И лишь когда в 1938 г. в Ленинградском физико-техническом институте (ЛФТИ) были проведены опыты, продемонстрировавшие высокую эффективность импульсной техники, последняя получила права гражданства и,в НИИ-9. Но «прожзвуковая идеология» полностью не была преодолена — на импульсный метод смотрели лишь как на средство, позволяющее заменить оптический дальномер радиодальномером (это обеспечивало возможность работы установки и в условиях облачности). Разработка дециметрового пеленгатора с непрерывным излучением так и продолжала играть главенствующую роль в работах института.

Образца станции с использованием непрерывного излучения, который мог бы быть принят на вооружение, создать так и не удалось. А вот в применении импульсного метода были достигнуты значительные успехи. Группа сотрудников Украинского физико-технического института), возглавляемая А. А. Слуцкиным , создала в 1938 г. импульсную установку для зенитной артиллерии (она была названа «Зенит »), работавшую в диапазоне волн 60—65 см. Правда, эта работа не была завершена, предпочтение было отдано разработке импульсных станций лучше освоенного 4-метрового диапазона.

Первые работы в ЛФТИ

Летом 1935 г. А. Ф. Иоффе по настоянию УПВО организовал в своем институте специальную лабораторию для работ по проблеме обнаружения самолетов. Руководство лабораторией было возложено на Д. А. Рожанского — одного из наших крупнейших физиков-радиотехников. С самого начала лаборатория взяла курс на применение импульсной техники в системах обнаружения. Когда я получил приглашение работать в лаборатории и пришел к Абраму Федоровичу, то он так прямо и сказал, что главной задачей считает создание импульсной техники.

В то время в лаборатории уже работали два дипломника — Н. Я. Чернецов и П. А. Погорелко . Д. А. Рожанский был в отпуске, и руководство работой в лаборатории мне пришлось взять на себя. Н. Я. Чернецов занимался созданием широкополосного усилителя промежуточной частоты для приемника супергетеродинного типа, а П. А. Погорелко — созданием эталонного генератора для калибровки приемника. На меня легли вопросы разработки антенно-фидерных устройств, задача создания входного преобразователя, от которого зависела чувствительность приемника, и выходного устройства (впоследствии — электронно-осциллографического устройства). Надо было в короткий срок — к осени 1935 г.- изготовить аппаратуру, которая позволила бы в реальных условиях получить количественные характеристики отражения самолетом радиоволн.

Испытания планировалось провести под Москвой. Организовать их должен был П. К. Ощепков. В его лаборатории в Москве уже разрабатывался передатчик, работавший в режиме непрерывных, модулированных частотой 1 кГц колебаний, который предназначался для этих испытаний. Рабочая длина волны была уже установлена: 3—4 м. Зимой 1935 г. изготовленную аппаратуру привезли в Москву, где и состоялись первые крупные испытания, в ходе которых удалось получить много ценных исходных данных для дальнейшей работы.

Передатчик, созданный в лаборатории П. К. Ощепкова, находился в здании на Красноказарменной улице (сейчас оно принадлежит Московскому энергетическому институту ), антенна была установлена на крыше. Мы привезли приемное устройство супергетеродинного типа, которое имело широкую полосу пропускания (так как это же приемное устройство предполагалось в дальнейшем использовать и для приема импульсов длительностью порядка 10 мс). Детектированные сигналы с выхода усилителя промежуточной частоты (УПЧ) приемника возбуждали настроенный на частоту модуляции передатчика контур высокой добротности, напряжение на котором выпрямлялось и направлялось в цепь чувствительного стрелочного прибора. В комплекте аппаратуры был также разработанный П. А. Погорелко излучатель стандартных сигналов, применявшийся для проверки и калибровки приемного устройства. Оба устройства питались от аккумуляторов и могли легко перевозиться с места на место.

Приемное устройство устанавливалось в различных пунктах в районе аэродрома близ Москвы. Самолет летал вокруг него по круговым траекториям разного радиуса и на различной высоте. Сигналы, отраженные от самолета, считывались со стрелочного прибора и записывались вручную. В процессе этой работы удалось получить обширные материалы, позволившие оценить перспективы техники обнаружения самолетов. В частности, на основе полученных Д. С. Стоговым результатов была обоснована так называемая линейная система обнаружения самолетов с помощью непрерывного излучения. Излучающие и принимающие устройства в этой системе располагались вдоль линии, параллельной обороняемой границе. Ее пересечение самолетом могло надежно регистрироваться. Такая система была разработана и в сентябре 1939 г. принята на вооружение под названием «РУС-1 ». Она эксплуатировалась в 1940 г. на Карельском перешейке во время советско-финляндской войны. При ее эксплуатации, однако, возникли трудности с определением принадлежности самолетов, и во время Великой Отечественной войны система «РУС-1» была перебазирована на менее ответственные участки границы, в Закавказье и на Дальний Восток . Ей на смену пришли импульсные станции «РУС-2 » и «Редут», обладавшие несравненно лучшими технико-тактическими характеристиками.

На полигоне Опытного сектора Управления противовоздушной обороны (апрель 1937 г.)
Слева направо : А. А. Малеев, Ю. Б. Кобзарев, П. А. Погорелко, Н. Я. Чернецов.

Первые испытания импульсного метода

Следующим этапом работ было проведение испытаний импульсного метода. В ленинградской лаборатории Опытного сектора УПВО, которую возглавлял бывший сотрудник ЛЭФИ В. В. Цимбалин , к 1937 г. были уже разработаны совершенно необычные генераторные лампы большой мощности (порядка 100 кВт в импульсе), работавшие в диапазоне волн от 3,5 до 4 м. Оставалось решить задачу управления генерацией, чтобы обеспечить стабильность частоты повторения импульсов и воспроизводимость их формы.

ЛФТИ надлежало изготовить электронно-осциллографическое устройство, которое позволяло бы регистрировать как излучаемые, так и отраженные импульсы и определять запаздывание вторых относительно первых.

К концу 1936 г. все подготовительные работы в ЛФТИ были закончены. Незадолго до этого мы понесли тяжелую утрату — безвременно скончался Д. А. Рожанский, отдававший много внимания и сил лаборатории. Тем не менее мы не снизили темпов работ, руководство которыми были возложены на меня, и договорные обязательства удалось выполнить своевременно. Однако начало опытов задерживалось в связи с трудностями, встретившимися при разработке передатчика в лабораториях Опытного сектора УПВО. Наконец, в марте 1937 г. лаборатория ЛФТИ в полном составе (Н. Я. Чернецов и П. А. Погорелко, к тому времени уже защитившие свои дипломные работы, автор этой статьи и лаборант А. А. Малеев ) выехала в Москву на полигон Опытного сектора.

Проверив свою аппаратуру, мы довольно долго ожидали, когда же заработает мощный передатчик, установленный в Москве. Дождаться его сигналов так и не удалось — задача управления мощным генератором импульсов В. В. Цимбалиным не была решена. Но стремление провести эксперимент было столь велико, что наш небольшой коллектив своими силами создал на полигоне экспериментальную установку радиообнаружения. Правда, передатчик, которым пришлось пользоваться, был маломощным (около 1 кВт в импульсе), и потому дальность действия установки оказалась небольшой. Тем не менее проведенные на ней первые в СССР наблюдения радиоимпульсов, отраженных от самолетов, оказали решающее влияние на весь ход дальнейших работ. Передающее устройство было построено на базе имевшегося на полигоне УКВ-генератора на типовых лампах Г-165 , вовсе не предназначенных для генерирования импульсов, с антенной типа «волновой канал». Был на полигоне и высоковольтный выпрямитель для питания анода ламп. Не хватало главного — управляющего импульсного модулятора.

При подготовке к испытаниям импульсного метода нами был перестроен излучатель стандартных сигналов. К нему добавили специальный контрольный осциллограф и модулятор, превращавший непрерывное излучение в импульсное. Вот этот импульсный модулятор и был взят в качестве задающего генератора модулирующего устройства передатчика. Наспех была сооружена «летучая» схема усилителя его импульсов. Усиленные импульсы подавались на сетки ламп УКВ-генератора, который управлялся этими импульсами вполне устойчиво.

Генерация импульсов производилась с частотой повторения около 1 кГц — на эту частоту и было рассчитано приемно-осциллографическое устройство. Оно отличалось от применявшихся в опытах 1936 г. тем, что имело на выходе электронно-лучевую трубку, на отклоняющие пластины которой непосредственно подавалось напряжение с последнего колебательного контура УПЧ приемника.

Линия развертки осциллографа представляла собой свертывающуюся спираль. В горизонтальном направлении луч отклонялся напряжением, подаваемым на пластины со специального низкочастотного контура, а в вертикальном — магнитным полем катушек того же контура. Затухающие колебания этого контура возбуждались специальным устройством, которое срабатывало синхронно с излучением импульсов передатчика, но с некоторым опережением, чтобы на развертке были четко отмечены и начало зондирующего импульса, и начало импульса, отраженного самолетом. Зная частоту колебаний «развертывающего» контура, по угловому расстоянию между началом импульсов можно было с хорошей точностью определить время запаздывания отраженного импульса и, соответственно, расстояние до самолета.

Приемное устройство размещалось в небольшой железной кабине, на крыше которой была установлена антенна. Кабина могла вращаться вокруг вертикальной оси. Антенная система установки состояла, как и в опытах 1936 г., из двух полуволновых вибраторов, связанных коаксиальными фидерами с входным контуром приемника. Специальное устройство позволяло регулировать величину связи приемника с каждым вибратором. Взаимное расположение полуволновых вибраторов, направление на передатчик и направление маршрута самолета обеспечивало возможность взаимной компенсации во входном контуре приемника сигналов, приходящих к вибраторам от передатчика, и сложение сигналов, отраженных от самолета.

Первый запуск установки при совместной работе приемника и передатчика нас обескуражил. Из-за больших напряжений, возникавших на выходе приемника, линия развертки с момента излучения зондирующего сигнала на некоторое время исчезла. Иными словами, приемник, как мы и опасались, оказывался в течение долгого времени неработоспособным. Нам показалось, что мы зашли в тупик. Если отраженный сигнал будет приходить в течение «мертвого времени», мы его увидеть не сможем. Да и где уверенность, что, когда линия развертки будет видна, приемник уже успеет полностью восстановить свою чувствительность? Механизм всего процесса оставался неясным.

В чем тут дело, удалось понять лишь день спустя. Я возвращался из Москвы на полигон и со станции шел вдоль полотна железной дороги. Меня обогнал поезд. Он уже скрылся из виду, а мне все еще был слышен его гул. Звук от поезда отражался от деревьев, стоящих шпалерами вдоль полотна железной дороги. А не могло ли быть подобной реверберации, вызванной отражением радиоволн от окружающих установку деревьев, и в нашем опыте? Если это действительно так, то после окончания сигналов от местных предметов приемник будет полностью восстанавливать свою чувствительность. Не было, однако, уверенности, что отраженный сигнал при таком удалении самолета от установки еще будет иметь величину, достаточную для его обнаружения. Поэтому когда наступил день первого полета — 15 апреля 1937 г.- наше волнение было очень велико. Но нам сопутствовала удача. Отраженные сигналы уверенно наблюдались на свободных от «местных предметов» участках развертки. Она были зафиксированы на фотографиях в виде коротких разрывов линии развертки.

Расположение аппаратуры в опытах 1937 г.
Антенна излучателя на рисунке состоит из 6 полуволновых вибраторов (цветные линии),
антенна приемника — из двух, разнесенных на расстояние, равное длине волны излучения.

Затем последовали опыты с самолетами, летавшими на различных высотах. Предельная зафиксированная на фотоснимках дальность составила 12 км, а визуально удалось наблюдать сигналы от самолета на расстоянии 17 км. Таким образом, днем рождения импульсной радиолокации в СССР можно считать 15 апреля 1937 г. Проведенные опыты имели решающее значение для дальнейшей работы. Поскольку все характеристики приемника и передатчика были известны, можно было оценить и отражательную способность самолета (эффективное сечение рассеяния, в соответствии с терминологией, принятой в физике), и дальность действия установки при переходе к генераторным лампам большой мощности и высоконаправленной антенне у приемника. Можно было уже не сомневаться, что дальность действия составит не менее 50 км.

Фото с экрана осциллографа в опытах 1937 г. По угловому расстоянию между началом зондирующего импульса и началом отраженного сигнала определялось расстояние до самолета в данном случае оно составляет 12,5 км). Высота полета задавалась и была равна 500 м.

Живя на полигоне Опытного сектора, сотрудники имели достаточно времени для бесед на различные темы. Одной из тем вечерних бесед был вопрос о возможности создания единой установки, у которой и приемная и передающая антенна были бы совмещены. Путь к этому, в сущности, уже был намечен примененным в опытах расположением антенн, при котором прямое излучение передатчика в приемник не попадало. Как достичь такого же эффекта при непосредственной близости антенн и при переходе к высоконаправленной приемной антенне — это пока было не вполне ясно. Тем не менее в возможности найти приемлемое решение мы не сомневались. Впоследствии единая установка лабораторией действительно была создана; правда, это было сделано несколько иначе, чем представлялось в 1937 г. По окончании работы на полигоне было принято решение — оказать Опытному сектору помощь в разработке модулятора мощного передатчика на лампах В. В. Цимбалина и к концу 1937 г. завершить разработку однопунктового радиолокационного устройства с дальностью обнаружения не менее 50 км. ЛФТИ заключил с УПВО соответствующий договор, однако вскоре обстоятельства изменились.

Р ешающие опыты

Летом 1937 г. Опытный сектор был ликвидирован. Все его оборудование и все дела были переданы Научно-испытательному исследовательскому институту связи РККА (НИИИС РККА ), подведомственному Управлению связи Наркомата обороны . ЛФТИ было предложено доводить работу до конца своими силами. Свалившаяся на лабораторию необходимость разработки мощного передатчика вызвала перегрузку коллектива и привела к задержке всей работы.

Хотя к концу 1937 г. разработка метода модуляции излучения мощного генератора в основном и была завершена, оставались еще некоторые неясности — в работе генератора наблюдались перебои. Кроме того, предстояло еще изготовить аппаратуру, которую можно было бы перевозить без повреждений. Наконец, нужно было решить задачу передачи высокочастотных импульсов большой мощности из закрытого помещения к наружной антенне при любой погоде. Окончательное решение все эти вопросы получили лишь к лету 1938 г. Аппаратура была изготовлена, перевезена в Москву и установлена в двух зданиях НИИИСа, разнесенных приблизительно на 1 км. Одно из зданий было расположено на холме и имело маленькую надстройку над верхним этажом — комнату 4X4 м с выходом на небольшую площадку на крыше. Другое здание находилось в низине, поросшей лесом. В надстройке первого здания было расположено приемное индикаторное устройство, связанное с антенной, находившейся на крыше. Во втором здании находилось передающее устройство с такой же антенной.

При разработке передатчика предстояло решить, сохранить ли большую частоту повторений (порядка 1 кГц), на которой проводилась работа в 1937 г., или удовольствоваться гораздо меньшей частотой — частотой силовой сети (50 Гц). Высокая частота повторений могла бы обеспечить более легкое обнаружение слабых сигналов: за время восприятия картины на осциллографе (порядка 0,05 с) шумы суммировались бы, и сигнал выглядел бы более четким. Но зато возникли бы большие трудности с устранением 50-герцовых наводок на приемно-осциллографи-ческое устройство. Из-за ограниченности отведенного нам времени было решено синхронизировать работу устройства с силовой сетью. Это позволило существенно упростить схему осциллографического устройства и достаточно легко решить проблему синхронизации приемника и передатчика. Напряжение, синхронизирующее развертку осциллографа, можно было получать от питаемого от сети фазовращателя, регулировка которого давала возможность вынести зондирующий импульс в начало развертки.

Фазовращатель был построен по оригинальной схеме, предложенной Е. Я. Евстафьевым . Угол поворота регулятора на шкале этого фазовращателя в точности равнялся углу смещения фазы выходного напряжения. Теперь развертка была не спиральной, а линейной. Для определения расстояния в процессе наблюдений на экран осциллографа накладывалась лента из прозрачного материала с нанесенной на ней шкалой расстояний в километрах. Другой способ состоял в том, что на отклоняющие пластины осциллографа подавалось небольшое напряжение известной частоты, дававшее масштаб расстояний на развертке. Для документирования результатов в корпусе устройства закреплялся фотоаппарат типа ФЭД, с помощью которого можно было делать снимки экрана осциллографа.

Фото с экрана осциллографа в опытах 1938 г. Линии развертки придана волнистая форма для упрощения измерения расстояния до самолета (в данном случае оно оставляет 30 км).

Как и в 1937 г., первый запуск установки вызвал у нас чувство тревоги. Большой участок развертки после зондирующего импульса был заполнен отражениями от местных предметов. Возник вопрос, а можно ли будет увидеть на этом фоне сигнал от самолета? Вскоре, однако, стало ясно, что мешающие сигналы можно ослабить, направив оси антенн несколько вверх, «оторвав» тем самым их диаграммы направленности от земли. После этого мы стали наблюдать сигналы, отраженные от случайно летавших вблизи самолетов. Установка была признана годной для проведения испытаний, в ходе которых подтвердились все наши расчеты: были фотографически зарегистрированы отражения радиоимпульсов от самолетов, удаленных на 55 км от установки. Проблема дальнего обнаружения самолетов в принципе была решена. Полученные результаты доказали, что можно переходить к опытно-конструкторским работам по созданию станций.

Получив сообщение об исходе испытаний, А. Ф. Иоффе всемерно форсировал решение нелегкого вопроса о привлечении к работе радиопромышленности. Путь от нашей стационарной установки лабораторного типа к промышленному образцу (да еще передвижному, как того требовал НИИИС) был нелегок. Радиозавод взять на себя эту задачу не отказался, но установленные ими стоимость образца и срок его изготовления были неприемлемы. Поэтому НИИИС решил изготовить сначала передвижной макет своими силами, использовав имеющуюся аппаратуру ЛФТИ, но поиски исполнителя работы по созданию образца тем не менее продолжить. Наконец, усилиями сотрудника НИИИСа А. И. Шестакова исполнитель (НИИ радиопромышленности) был найден, и в апреле 1939 г. было принято постановление Комитета Обороны при СНК о разработке, при участии сотрудников ЛФТИ, двух образцов станций радиообнаружения самолетов. Работу возглавил один из ведущих сотрудников НИИ А. Б. Слепушкин . Передатчиком занялся Л. В. Леонов , осциллографическим индикатором — С. П. Рабинович , приемником — В. В. Тихомиров .

В начале 1940 г. были изготовлены два образца станции, состоявшей из двух разнесенных на 300 м синхронно вращавшихся кабин, в одной из которых было установлено передающее устройство, в другой — приемное. 26 июля 1940 г. станция была принята на вооружение под названием «РУС-2». Теперь можно было считать, что импульсная радиолокация твердо стоит на ногах. Еще раньше, до того как были изготовлены эти два образца, в НИИИСе под руководством А. И. Шестакова был создан аналогичный двухантенный макет (его назвали «Редут »), в котором использовались блоки установки ЛФТИ. Это был передвижной макет: два автофургона с аппаратурой внутри и антеннами на крыше, что давало возможность провести всесторонние испытания установки, в частности определить зависимость дальности ее действия от высоты полета самолета. Такие испытания были проведены осенью 1939 г. в Крыму , в районе Севастополя , при моем участии. В ходе испытаний была продемонстрирована возможность обнаружения самолетов на расстоянии до 150 км, и выяснилось, что именно можно требовать от промышленных образцов.

Вскоре после окончания севастопольских испытаний началась война с Финляндией . Макет «Редута» по инициативе А. Ф. Иоффе был установлен на Карельском перешейке, и всю войну на нем (под руководством А. И. Шестакова) шла боевая работа. Так импульсная радиолокация получила первое боевое крещение и заслужила авторитет в Ленинградском корпусе ПВО.

После первых двух образцов были изготовлены еще 10 таких же станций. Работать на них было крайне тяжело из-за непрерывного вращения кабин, и потому работы по совершенствованию станции продолжались в быстром темпе. В частности, в НИИ был разработан высокочастотный токосъемник — устройство, позволяющее вращать антенну при том, что аппаратура, находящаяся в кабине, оставалась неподвижной. Была также усовершенствована схема модуляции.

Во время советско-финляндской войны по инициативе А. Ф. Иоффе было принято решение построить под Ленинградом большую стационарную установку повышенной дальности действия для нужд противовоздушной обороны. Строительство этой установки осуществлялось исключительно быстрыми темпами при всестороннем содействии Ленинградского обкома ВКП(б) . Руководил работой Н. Я. Чернецов . Установка, построенная на высоком берегу озера близ п. Токсово, состояла из двух 20-метровых вышек, разнесенных на 100 м. На вышках находились кабины с антеннами на крышах. В одной кабине размещался генератор, в другой — приемно-осциллографическое устройство. Антенны были связаны стальным тросом и могли синфазно вращаться в пределах сектора 270°. Около вышки с генератором находился домик с помещением для модулятора с контрольным осциллографом и комнатами для отдыха персонала.

Как ни быстро шло строительство, война с Финляндией закончилась раньше. Построенная станция была использована ЛФТИ для дальнейших исследований. На ней, в частности, велись опыты по созданию системы опознавания своих самолетов. На основании полученных оценок эффективного сечения рассеяния радиоволн самолетом казалось, что, разместив на самолете полуволновый вибратор, можно, разрывая и соединяя его посередине в заранее условленном порядке, вызвать изменение величины отраженного сигнала в том же порядке. Опыты, проведенные для осуществления идеи такого «пассивного устройства опознавания», оказались неудачными, и в дальнейшем в ЛФТИ был разработан «активный ответчик» — устройство, генерирующее и излучающее импульс в ответ на пришедший к самолету зондирующий сигнал. Это устройство прошло успешные испытания в последние предвоенные дни в реальных условиях под Москвой. Они положили начало работам в этом направлении, проводившимся затем в нескольких лабораториях во время войны. Проблема опознавания своих самолетов и сегодня остается одной из важнейших проблем радиолокации.

Другой работой, проведенной на станции, было испытание в реальных условиях предложенного П. А. Погорелко способа объединения передающей и принимающей антенн. Прием велся одновременно и на антенну передатчика (для этого приемник был установлен на крыше кабины с передатчиком, непосредственно под антенной) и на «штатную» приемную антенну на другой вышке. Испытания, проведенные в июле 1940 г., показали, что сигнал от самолета появлялся и исчезал на экранах обоих приемных устройств одновременно, что доказывало возможность создания радиолокационных станций с одной антенной, имеющих ту же дальность действия, что и двухантенные станции.

Одной из проблем, над которой работали в ЛФТИ перед войной, было существенное увеличение дальности обнаружения самолетов путем применения более длительных и долго накапливаемых импульсов. Работы в этом направлении предполагалось проводить на установке в п. Токсово. Война привела к их прекращению: установка была включена по сигналу тревоги. Непрерывное круглосуточное дежурство на ней вначале велось силами лаборатории (ее состав к этому времени в связи с расширением тематики пополнился), но вскоре на установку направили воинское подразделение, которому после обучения и была передана дальнейшая ее эксплуатация, а лабораторию эвакуировали в Казань. Токсовская установка проработала всю войну. Благодаря ее высоким антеннам, на ней можно было обнаруживать самолеты на дальних подходах (до 200 км) и низколетящие цели. Это было использовано для обнаружения и уничтожения вражеских аэродромов на Карельском перешейке.

Незадолго до начала Великой Отечественной войны вышло правительственное постановление о присуждении Государственных премий СССР за выдающиеся научные работы и изобретения. Среди награжденных был и коллектив лаборатории ЛФТИ в составе П. А. Погорелко, Н. Я. Чернецова и автора этих строк. Достойно сожаления, что в коллектив не был включен инициатор работ П. К. Ощепков, организовавший и лаборатории в системе УПВО, и специальный полигон под Москвой. Его усилиями было обеспечено и проведение испытаний первой импульсной радиолокационной установки на этом полигоне.

Во время войны фронт работ в области радиолокации сильно расширился. В НИИ началось усовершенствование станций «РУС-2» и создание новых радиолокационных установок. Крупным достижением института стала разработка станции, которую можно было транспортировать в упаковках. Эта портативная станция, названная «Пегматит», легко упаковывалась в ящики и перевозилась на одной машине в указанное место. Ее можно было разместить в деревенской хате, а мачту антенны прикрепить к дереву. Станция «Пегматит» получила широкое распространение как станция предупреждения и наведения истребительной авиации. За работы в области радиолокации коллективу сотрудников НИИ радиопромышленности во главе с А. Б. Слепушкиным была присуждена Государственная премия СССР 1943 г.

В годы войны производство станций типа «РУС-2» и «РУС-2с» велось в больших масштабах — в войска было передано свыше 600 таких установок. В дальнейшем проводились работы по их совершенствованию и расширению производства.

Заслуживает быть отмеченной и другая работа НИИ военных лет — создание самолетной установки, обеспечивающей возможность наведения истребителей в ночное время — «Гнейс-2 ». Были созданы также станции обнаружения самолетов для кораблей Военно-Морского флота , нашедшие широкое применение.

Работы, о которых рассказано выше,- лишь искра, которая зажгла огромный костер. Для расширения фронта работ по радиолокации при Государственном комитете обороны был создан Совет по радиолокации, организованы научно-исследовательские институты и заводы, созданы специальные кафедры в высших учебных заведениях.

Радиолокация сегодня — это обширная область техники, которая впитывает в себя все достижения современной электроники. С помощью радиолокации мы имеем возможность заглянуть в глубь Земли и космоса. Облучая длительное время далекую планету сигналами, посылаемыми со стометровых зеркал-антенн, и анализируя отраженные сигналы, можно получить ценнейшую информацию об особенностях строения поверхности планеты. Разместив радиолокатор на космическом аппарате, можно изучать структуру поверхности планет, в том числе и Земли. Без радиолокаторов немыслима работа современных аэродромов, с их помощью осуществляется навигация морских судов и космических кораблей.

Современная техника радиолокации поражает воображение. Диапазон длин волн, в котором работают радиолокационные установки, чрезвычайно широк — от десятков метров до миллиметров. Антенны аэродромных радиолокаторов и радиолокаторов ПВО представляют собой огромные сложные сооружения, насчитывающие до нескольких тысяч элементарных излучателей. Они управляются по специальной программе, позволяющей производить обзор пространства без вращения всей антенны, определять точное положение и характеристики обнаруживаемых объектов. Иногда в шутку говорят, что с помощью современной техники радиолокации об обнаруженном самолете можно узнать все, кроме фамилии летчика.

Зондирование производится радиосигналами со сложной внутренней структурой. Изменилась и техника приема отраженных сигналов. После предварительного усиления они записываются в цифровой форме, и вся сложная процедура их анализа производится средствами ЭВМ.

Если на наземных радиолокационных станциях можно использовать антенны больших размеров, то для самолетов и космических кораблей нужны установки с небольшими антеннами. С помощью разработанного в последние годы так называемого метода синтезированной аппертуры удалось создать устройства, которые, анализируя совместно сигналы, полученные на значительном участке пути, обеспечивают такую же высокую разрешающую способность установки, как если бы антенна была больших размеров.

Не вызывает сомнения, что бурное развитие радиоэлектроники, которое происходит в наши дни, приведет к дальнейшему прогрессу в области радиолокации.

ТЕХНИКА И ВООРУЖЕНИЕ № 2/2008, стр. 34-43

ПЕРВЫЕ ОТЕЧЕСТВЕННЫЕ РЛС ДАЛЬНЕГО ОБНАРУЖЕНИЯ

Е. Климович,

А. Гладков

Продолжение.

Начало см. в «ТиВ» №8/2007г.

Дальнейшие пути совершенствования первых РЛС

В марте-июне 1941 г. была выпущена опытная партия станций РУС-2 в количестве десяти комплектов. По своим техническим характеристикам РУС-2 вполне отвечала требованиям времени, но не удовлетворяла войска в тактическом и эксплуатационном отношениях. В процессе изготовления опытной партии РУС-2 и эксплуатации их в войсках было установлено, что эта станция может быть значительно упрощена с одновременным повышением ее надежности и улучшением других характеристик. Упрощение станции виделось прежде всего в замене двухантенной системы на одноантенную, что позволяло разместить передающую и приемную аппаратуру на одной автомашине в неподвижном фургоне, но с вращающейся антенной и отказаться от громоздких и сложных приводов для фургонов и устройств для их синхронного и синфазного вращения. К тому же, вращение фургона не добавляло удобства работе оператора: по свидетельству Ю.Б. Кобзарева, «более двух часов такой «карусели» никто не выдерживал».

Реализация такого предложения наряду с возможностью конструктивных и технологических улучшений в аппаратуре РАС должна была привести к росту выпуска станций, снижению их стоимости, повышению надежности и удобства применения в войсках. Задача увеличения и упрощения производства станции стала тем более актуальна, что выпускавший РУС-2 завод им.Коминтерна вскоре был эвакуирован в Новосибирск, где смог возобновить свою деятельность только в первом квартале 1942 г.

Возможность работы на одну антенну ЛФТИ проверил на своей опытной РЛС, развернутой под Токсово. Модернизацию РУС-2 осуществляли ЛФТИ и НИИ-20 (НИИ радиопромышленности). Одноантенный вариант станции требовал коммутатора для переключения антенны с передачи на прием и обратно, при котором исключалось бы попадание излучаемого сигнала в приемный тракт, и согласования антенны с передающей и приемной аппаратурой. Инженером Д.С. Михалевичем была предложена схема, основанная на использовании свойств четвертьволновой линии, которая при отсутствии потерь может служить для согласования полных сопротивлений - линии передач и нагрузки. Передатчик с помощью автотрансформаторной связи (индуктивной связи колебательных контуров) подключался к фидеру, к которому на расстоянии примерно в четверть волны от анодного контура присоединялся фидер питания радиоприемника. Переключение антенны с передачи на прием и обратно осуществлялось с применением электрических разрядников, блокирующих при передаче входную часть приемника от мощных импульсов передатчика. Эта схема стала классической для многих последующих типов импульсных РЛС.

При разработке конструкции вращающейся антенны была решена и другая сложная задача по созданию высокочастотного устройства, которое должно было обладать достаточной электрической прочностью в режиме передачи и сохранять постоянство входного сопротивления в цепи антенны при ее вращении. В результате появился так называемый бесконтактный токосъемник из индуктивно связанных цепей с распределенными постоянными. Был также разработан более простой по конструкции индикатор обзора воздушного пространства.

В сентябре 1940 г. Управление связи РККА выдало ТЗ на проектирование опытного образца РЛС «Редут-41». В техническом задании содержались следующие тактико-технические требования:

Совмещение передающей и приемной аппаратуры в одном фургоне при работе на общую антенну;

Вращение не фургона, а только установленной на нем антенны;

Размещение во втором автофургоне двух агрегатов питания (рабочего и резервного);

Станция должна обнаруживать самолеты на дальности до 30 км на высоте 500 м и до 110 км на высоте 8000 м с точностью определения дальности 1,5 км, азимута 7°, рабочая длина волны 4,0-4,3 м (частоты 75-70 МГц) при длительности импульса 10-12 мкс;

Вся аппаратура станции должна размещаться на двух автоприцепах.

Кроме того, РЛС разрабатывалась в двух вариантах: в автомобильном (для обеспечения средствами разведки Сухопутных войск) и в разборном с перевозкой радиоаппаратуры и агрегатов питания в укладочных ящиках любым видом транспорта (для стационарных постов ВНОС на территории страны). Разработку и серийное производство автомобильных станций поручили одному из радиозаводов, а разборных - НИИ-20 (НИИ радиопромышленности) .

НИИ-20 создавал также стационарную станцию с расчетной дальностью обнаружения до 200-250 км. Станция получила шифр «Порфир», ее экспериментальный образец был готов в начале войны. 21 июля 1941 г. станцию смонтировали под Можайском, и она внесла свой вклад в своевременное приведение в боевую готовность истребительной авиации и зенитной артиллерии при первом налете гитлеровской авиации на Москву. Станция «Порфир» имела двухъярусную антенну типа «волновой канал» длиной 7 м и высотой 25 м. Коэффициент направленного действия антенны в несколько раз превосходил коэффициент станции «Редут». Передатчик был выполнен на четырех лампах ИГ-8 (у «Редута» - на двух) с анодным контуром в виде коаксиального эндо-вибратора (объемного резонатора). Приемник с каскадом усиления по высокой частоте обладал повышенной чувствительностью. Это послужило основанием для применения его схемы в приемнике разборного варианта станции «Редут-41», которым занимался коллектив НИИ-20 под руководством А.Б. Слепушкина. Был упрощен ряд узлов «Редута», в частности, ламповый модкоятор был заменен тиратронным. Антенна должна была размещаться на деревянной треноге, изготавливавшейся расчетом на месте, потом в комплект включили разборную мачту из металлических труб. Этот «упаковочный» тип станции получил наименование «Пегматит». Изготовили опытную партию из 10 станций и мачт с антеннами к ним, устанавливаемых на земле и соединяемых фидером с передающим и приемным устройствами.

Ввиду явных преимуществ одноантенных станций Управление связи РККА решило серийное производство двухантенных РУС-2 не осуществлять, а сразу выпускать одноантенную «Пегматит». В мае 1941 г. институт подготовил первые две станции «Пегматит» , которые успешно прошли полигонные испытания и подтвердили полное соответствие их ТТХ станции «Редут» (РУС-2). Станция была одобрена уже в начале июля 1941 г., но драматические события первого периода войны и эвакуация подразделений НИИ в Барнаул не позволили закончить сборку опытной партии к началу 1942 г. РЛС «Пегматит» (известна также как П-2) поступила на вооружение войск ПВО, ВВС и ВМФ под названием РУС-2с. Одноантенные станции дальнего обнаружения из опытной партии были установлены в Московской зоне ПВО и получили высокую оценку командования и войск ПВО. РУС-2с обнаруживала цель на дальностях до 110 км на высоте 8000 м и до 30 км на 500 м, определяла дальность с точностью до 1,5 км и азимут с точностью ±7°, а при нескольких засечках (с учетом вращения антенны) позволяла вычислять также курс цели. Комплекты РУС-2с перевозились в укладочных ящиках и развертывались в небольших стационарных помещениях (избах, землянках и т.д.) Антенна высотой 12 м крепилась растяжками. Серийное производство станций «Пегматит» организовали в Москве на заводе «Авиаприбор» (с 1942 г. - завод № 339 Наркомавиапрома) и заводе № 703 Наркомсудпрома (впоследствии - завод «Салют»).

В процессе производства РЛС РУС-2с институтом велись работы по ее дальнейшему совершенствованию, что позволило уже в апреле 1942 г. перейти к модернизированной станции П-2М. Эта станция выпускалась в течение всей войны самим НИИ и на заводах.

За разработку станций РУС-2 и РУС-2с, ставших основой технической вооруженности постов ВНОС и значительно поднявших боевую эффективность войск ПВО, группе сотрудников НИИ-20 в составе А.Б. Слепушкина, В.В. Тихомирова, Л.В. Леонова, Д.С. Михалевича, И.Т. Зубкова, И.И. Вольмана в 1943 г. была присуждена Сталинская премия, а в 1944 г. НИИ за успехи, достигнутые в развитии радиолокации, был награжден орденом Трудового Красного Знамени. Создание одноантенной РУС-2 явилось крупным достижением отечественных ученых и инженеров. Стоит отметить, что английские специалисты, ознакомившиеся в конце войны со станциями РУС-2, были поражены простотой и надежностью ее конструкции и тем, как эффективно была решена задача работы на одну антенну. К тому же, отечественные РУС-2с, не уступая по своим возможностям британской станции MRU-105 или американской SCR-270, отличались мобильностью и быстротой развертывания на позиции.

Для сравнения: британская MRU-105 (mobile radio unit, 105 - высота антенны в футах, т.е. около 32 м, первые три такие станции были присланы в СССР в декабре 1941 г.) монтировалась в двух прицепных автофургонах «Кросслей» и собиралась на позиции довольно долго. Синхронизация между передающей и приемной машиной шла по укладываемому на грунте коаксиальному кабелю (в ЗИП такого кабеля не было). В отличие от РУС-2, станция MRU-105 работала в секторе около 120°, причем по краям сектора дальность ее действия была вдвое меньше, чем по оси. Преимуществом MRU-105 было наличие в приемной аппаратуре гониометра (т.е. устройства для измерения углов в пространстве) , в который подавались сигналы от пар диполей верхней и нижней частей антенны, по соотношению сигналов вычислялся угол места цели, и с помощью номограммы оператор мог определить высоту ее полета. В плане ремонтопригодности английских станций определенную положительную роль сыграл тот факт, что отечественные высоковольтные кенотроны и модуляторные электронные лампы выпускались на американском оборудовании и были близкими аналогами английских и американских ламп.

Производство РЛС дальнего обнаружения росло. Если выпуск станций РУС-2 и РУС-2с в 1941 г. принять за 100%, то в 1942 г. он составил 106%, в 1943 г. - 136%, в 1944 г.- 306% и в 1945 г. - 588%. Количество РЛС дальнего обнаружения, выпущенных отечественной промышленностью к концу войны, приведено в таблице.

Самой массовой отечественной станцией дальнего обнаружения стала РУС-2с. Для сравнения: союзники поставили в СССР по ленд-лизу 1788 РЛС для зенитной артиллерии, а также 373 морских и
580 авиационных РЛС. С учетом состояния молодой отечественной радиопромышленности немаловажными были и поставки из-за рубежа специализированного оборудования для производства радиокомпонентов. Научно-исследовательские и опытно-конструкторские работы по радиолокации в СССР не отставали от зарубежных, а вот возможности промышленности оказались скромнее, чем у союзников и противника.

Тем не менее в годы Великой Отечественной войны первые отечественные РЛС успешно выполняли боевые задачи по обнаружению воздушного противника, обеспечивая оповещение и целеуказание зенитной артиллерии и истребительной авиации. Применялись они также на флоте при прикрытии баз, а в ВВС - для защиты аэродромов и наведения истребительной авиации на самолеты противника. РУС-1, РУС-2 и РУС-2с в годы войны вошли в систему ПВО Москвы, Сталинграда, Горького, Ленинградского фронта, Бакинской армии ПВО и Рыбинско-Ярославского дивизионного района ПВО. Об их значении свидетельствует памятник РЛС «Редут» («Редут-1», как он числился в 72-м орб ВНОС, открытый 9 мая 2003 г. в городе Токсово под Ленинградом (хотя в памятнике использована антенна совсем другой, послевоенной РЛС).

Созданием станций РУС-2 и РУС-2с практически закончился предвоенный период развития РЛС дальнего обнаружения. Одновременно начались работы по совершенствованию станций дальнего радиообнаружения и созданию новых образцов.

Так, в планах НИИИС РККА на 1941 -1942 гг. были намечены дальнейшие важные направления в области создания средств радиообнаружения, а именно:

Разработка станции обнаружения на УКВ с дальностью обнаружения 300-350 км («Редут-Д»);

Обеспечение обнаружения самолетов на малых высотах (при высоте полета от 50 м и более);

Создание для войсковой ПВО станции типа «Редут», работающей на ходу, с дальностью обнаружения 10-50 км;

Разработка аппаратуры определения высоты полета самолета станциями РУС-2 и РУС-2с;

Разработка станции для обеспечения стрельбы зенитной артиллерии;

Разработка аппаратуры наведения для истребителей, в том числе бортовой РЛС обнаружения на волнах 10-15 см с дальностями 1,5-2 км и бортового приемника сигналов, отраженных от самолета противника при облучении его с земли станциями РУС-2;

Разработка аппаратуры опознавания государственной принадлежности самолетов (по признаку «свой- чужой»), работающей во взаимодействии со станцией РУС-2;

Разработка методов радиотехнической разведки и определения характеристик РЛС противника и его станций помех.

Реализацию этих планов прервала война, но она же заставила вернуться к ряду из этих тем.

В ЛФТИ в 1941 г. начали работу по созданию станций обнаружения с дальностями действия 300-350 км. Увеличение дальности обнаружения предполагалось достичь за счет большой энергии в зондирующем импульсе значительной длительности и накопления энергии эхо-сигналов в резонансном контуре, настроенном на частоту повторения импульсов. Поскольку эхо-сигнал, в отличие от шумового, имеет постоянные характеристики, его накопление позволяет значительно улучшить отношение «сигнал/ шум» и выделить полезный сигнал на фоне шумов. Дальность до цели должна была определяться по фазе колебаний в приемнике, что дало основание назвать метод импульсно-фазовым.

Повышение точности отсчета дальности до цели ожидалось получить путем стробирования эхо-сигналов по дальности. Научно-исследовательская работа этого направления была примечательна тем, что являлась первой разработкой, в которой предполагалось применить метод накопления энергии эхо-сигналов и осуществить высокую точность дальномет-рии при весьма длительных импульсах. До начала Великой Отечественной войны ЛФТИ удалось выполнить лишь небольшую часть исследований, в частности, создать резонансный фильтр-накопитель эхо-сигналов. После начала войны эти исследования в ЛФТИ также прекратились.

Выдвигались и другие предложения по дальнему радиообнаружению. Профессор Физического института АН СССР С.Э. Хайкин предложил использовать московскую радиостанцию в качестве источника мощного сигнала, а простые приемные устройства расположить широкой сетью и связать с зенитными прожекторами. Принимая сигнал, отраженный от самолета, приемная станция указывала бы направления прожектористам. Но при тогдашнем уровне радиоприемных устройств и отсутствии систем автоматической обработки сигнала такая схема просто не могла бы работать.

В литературе описан также способ радиоперехвата, довольно эффективно применявшийся в первые месяцы войны, не относящийся, правда, к радиолокации. Радиоприемники настраивались на частоту радиостанций германских бомбардировщиков. Взлетая с аэродромов на захваченной территории Украины и Белоруссии, расположение которых было хорошо известно командованию советских войск, летчики выходили в эфир перед построением в боевые эшелоны. Далее радиообмен осуществлялся с немецкой пунктуальностью через каждые пятнадцать минут полета вплоть до подхода группы к цели. Осуществляя радиоперехват, зная скорость и дальность полета, наши войска получали точную и подробную информацию о приближении самолетов противника.

Продолжение работ по РЛС дальнего обнаружения

После постановки в ходе войны на производство РУС-2с и П-2М непосредственно встала задача дальнейшего совершенствования РАС дальнего обнаружения. Дело в том, что по опыту эксплуатации в войсках станции РУС-2 и РУС-2с использовались и как станции раннего предупреждения, и как станции наведения истребительной авиации ПВО, а в отдельных случаях - и как станции целеуказания зенитной артиллерии. Между тем по точности определения координат и зонам действия РУС-2 и РУС-2с не в полной мере соответствовали задачам наведения и целеуказания. Опыт разработки и производства РЛС в годы войны свидетельствовало возможности повышения эксплуатационной надежности и упрощения обслуживания станций. Постановлением ГКО от 20 марта 1943 г. на НИИ радиопромышленности возлагалась разработка новой станции дальнего обнаружения. Тактико-технические требования к ней, разработанные НИИИС РККА и утвержденные командованием войск ПВО, предусматривали следующие характеристики:

Дальность обнаружения цели - не менее 130 км, пеленгования - 70 км;

Точность определения азимута при обнаружении - 4° и пеленгования-1,3°;

Точность определения дальности - 650 м и высоты - 300-700 м;

Определение координат цели по азимуту - от 0 до 360° и по углу места - от 4 до 18°;

Время определения трех координат цели -не более 25 с;

Длина волны - 4,16 м;

Мощность излучения в импульсе - 80-100 кВт, длительность импульса - 10-15 мкс.

Станция получила обозначение П-3 и создавалась в разборном варианте. Ее инженерной особенностью являлась антенная система, состоявшая из двух антенн: азимутальной, сигналы с которой поступали на вход приемника через антенный переключатель, и вертикальной зондирующей, которая при излучении работала от передатчика, а в период паузы переключалась на прием и функционировала вместе с азимутальной антенной. Приближенное определение азимута производилось обычным способом - по максимуму амплитуды сигнала от антенны, направленной на самолет. В режиме точного определения азимута за счет действия антенного переключателя и соединения между собой обеих частей азимутальной антенны в противофазе на экране отметчика при ориентировании системы на цель были видны два раздвинутых по шкале импульса равной амплитуды. При уходе цели вправо или влево относительно оси антенны один импульс возрастал, а другой уменьшался (метод равносигнальной зоны). Для определения высоты полета самолетов использовалась система, состоявшая из двух антенн типа «волновой канал», установленных на разных высотах от поверхности земли, - 7 и 11м. Каждая из них подключалась к аппаратуре станции через гониометр. От положения ползунка гониометра зависела результирующая характеристика направленности обеих антенн в вертикальной плоскости. Угол места цели определялся по пропаданию сигналов в момент перемещения ползунка гониометра (нулевое излучение и прием). По измеренной дальности и найденному углу места с помощью номограммы оператор получал высоту цели над землей. Причем управление характеристикой направленности антенн в вертикальной плоскости позволило не только определять высоту полета, но и устранять в достаточно широких пределах мертвые зоны ДНА, т.е. зоны, из которых не было приема эхо-сигнала.

В разработке станции участвовали И.Н. Антонов, Е. Я. Богуславский, Р.С. Буданов, И.И. Вольман, А.Р. Вольперт, СП. Заворотищев, Л.В. Леонов, П.В. Подгорнов и др. В период с 20 июля по 15 августа 1944 г. станция П-3 проходила заводские испытания под Москвой. Подтвердилось ее соответствие требованиям заказчика. ГАУ, не ожидая окончательно доводки станции и ее полигонных испытаний, внесло в ГКО предложение об изготовлении в том же году опытной партии новых РЛС. ГКО обязал НИИ предоставить в IV кв. 1944 г. 14 комплектов П-3.

Полигонные испытания станции П-3, проведенные на НИЗАП ГАУ в январе-феврале 1945 г. (инженер-испытатель Г.Т. Опрышко), показали следующие результаты.

Высотные приставки к станциям РУС-2 и РУС-2с

Прямыми измерениями, производимыми с помощью РУС-2 и РУС-2с, получались только две координаты цели - наклонная дальность и азимут. Однако надежное наведение истребительной авиации и расчет данных для стрельбы зенитной артиллерии требовал быстрого определения по результатам измерений еще третьей координаты - высоты. Встала задача дополнить станции РУС-2 и РУС-2с аппаратурой определения высоты. Важность этой задачи была ясна и ранее, теперь же она стала столь неотложной, что подготовленное НИИИС РККА задание на разработку соответствующей аппаратуры было выдано радиозаводу, НИИ-20 (НИИ радиопромышленности) и ЛФТИ.

На радиозаводе эта аппаратура, получившая название «высотная приставка», разрабатывалась инженером Е.А. Селиным (ранее работавшим в НИИ-9 и получившим там опыт работы над радиолокационной аппаратурой) по техническому решению, предложенному инженером НИИИС А.И. Шестаковым. Приставка представляла собой, по сути, дополнительную РЛС для определения координат цели, функционирующую совместно с РЛС обнаружения. В основу был положен принцип определения утла места, основанный на том, что каждая антенна высотной приставки принимает радиоволны, как пришедшие непосредственно от цели (самолета), так и переотраженные от земли. В результате между каждой парой антенн приставки всегда существует напряжение, являющееся функцией угла падения волны, т.е. угла места цели. Благодаря этому с помощью гониометра, включаемого между верхней или нижней парой антенн, можно определять угол места самолета. Зная угол места цели и наклонную дальность до нее, высоту можно вычислить по простой формуле прямоугольного треугольника. Комплект аппаратуры высотной приставки включал мачту высотой 16,5 м с тремя антеннами, гониометр как средство измерения углов места, устройство определения высоты и переключатель антенного устройства и приемника. Антенны были смонтированы на мачте на разных высотах: нижняя - на 4,12 м от земли, средняя - 8,12 м и верхняя - 16,48 м.

Станция орудийной наводки СОН-2а (излучающая установка).

Контрольные испытания высотной приставки прошли в августе 1943 г. под Москвой под руководством инженера НИИИС А.И. Кувшинова. По их результатам были получены следующие срединные ошибки определения высоты: при полете цели на 4000 м - 230 м на нижней паре антенн и 210 м на верхней паре, при полете цели на 6000 м - соответственно 320 и 310 м. Для определения утла места требовалось около 12 с. На основании испытаний были сделаны следующие выводы: высоту полета самолета можно установить на расстояниях в пределах 60% от дальности обнаружения; рекомендовать высотную приставку для серийного производства к станциям РУС-2. Эта рекомендация вскоре была реализована, что позволило расширить возможности и повысить тактические свойства станции РУС-2 при ее применении в службе ВНОС и для наведения истребительной авиации. С учетом того же технического предложения А.И. Шестакова аналогичная высотная приставка была разработана и в НИИ-20 к станциям РУС-2с и П-2М. Она также успешно прошла испытания и выпускалась серийно вплоть до создания новой станции дальнего обнаружения П-3: в аппаратуру станции П-3 устройство определения высоты входило органически.

Коллектив ЛФТИ под руководством Ю.Б. Кобзарева еще в конце 1941г., сопоставляя конструкцию и технические характеристики английской станции GL-MkII с РУС-2, в инициативном порядке занялся теорией гониометра для определения высоты целей. Исследования и разработки по этому плану были подтверждены актом представителя НИИИС КА Д.С. Стогова от 25 декабря 1941 г. К марту 1943 г. ЛФТИ разработал теорию гониометрического метода, создал методику расчета зон пеленгования и предложил способ устранения мертвой зоны ДНА в зените у станции СОН-2от (об этой станции будет рассказано далее) при длине волны излучения 4 м. 16 марта 1943 г. представители НИИИС КА М.И. Куликов и А.И. Шестаков после ознакомления с работами ЛФТИ сделали заключение, что предлагаемые институтом пути модернизации РУС-2 не удовлетворяют требованиям заказчика и не могут быть положены в основу превращения этой станции в станцию орудийной наводки. Вскоре Ю.Б. Кобзарева перевели на работу в Совет по радиолокации при ГКО, его сотрудников - в научно-исследовательский институт радиолокации, и на этом активные работы в области радиолокации в ЛФТИ практически прекратились.

Одновременно проблемой определения высоты цели по собственной инициативе занимались инженеры и техники в частях ВНОС. Так, воентехники отдельного радиотехнического батальона (ОРТБ) ВНОС Московской зоны ПВО Н.И. Кабанов, Е.И. Алейников, Я.Н. Немченко и Б.И. Молодов, занимавшиеся эксплуатацией станций РУС-2, коллективно разработали соответствующую аппаратуру. Проверив приставку в боевых условиях, они изготовили партию приставок в мастерских батальона и снабдили ими все станции РУС-2 Московской зоны ПВО.

Аналогичную аппаратуру создали также в Ленинградской армии ПВО инженеры Ю.Н. Шеин и И.А. Лютоев, бывшие участники разработок в НИИ-9 радиоискателей для зенитной артиллерии. Приставка их конструкции была испытана на станции РУС-2 на Карельском перешейке, а затем, после испытаний и калибровки, их ставили и на другие станции.

А воентехник В.Г. Петров сделал антенну станции РУС-2с, на которой служил (также в Московской зоне ПВО), подъемной и опускаемой. Опуская антенну с помощью лебедки по мере приближения цели, он добивался того, что приземный лепесток ДНА оставался направленным на цель, отчасти устраняя отрицательное влияние изрезанного профиля ДНА и мертвых зон. Понятно, что подобные методы требовали от оператора РЛС большой натренированности в определении середины основного лепестка и момента «засечки» цели.

Приборы опознавания

С началом боевой эксплуатации в ПВО станций дальнего обнаружения встала новая задача: кроме обнаружения самолетов требовалось определять также их принадлежность по принципу «свой-чужой». Еще 19 мая 1940 г. Управление связи РККА заключило с ЛФТИ договор на модернизацию станции «Редут», при этом имея в виду попутно найти способ опознавания.

Группа под руководством Ю.Б. Кобзарева предложила способ опознавания на основе применения регенеративного ответчика, устанавливаемого на самолете и реагирующего (выдающего ответный сигнал) на сигналы только «своих» РЛС. Испытания на самолете дали хорошие результаты, и в канун Великой Отечественной войны разработчики получили соответствующее авторское свидетельство. С началом войны в связи с эвакуацией института опытный ответчик был передан в НИИ-9, где под руководством Н.Ф. Алексеева и Д.Е. Малярова прошел конструктивную доработку, после чего был передан в производство.

Аппаратура опознавания была разработана также инженерами НИИИС, и в середине 1941 г. при испытании ее на самолетах были получены удовлетворительные результаты.

В середине 1942 г. руководство разработками самолетных приборов опознавания взял на себя НИИ ВВС. Он заключил договор на изготовление прибора опознавания («свой-чужой») с радиозаводом-институтом Наркомата электропромышленности. После изучения уже имеющихся к тому времени приборов в лаборатории профессора С. Э. Хайкина был создан прибор, успешно прошедший испытания на истребителях в Московской зоне ПВО. Он был принят на вооружение и в 1943 г. поставлен на серийное производство. К концу 1943 г. приборы-ответчики для самолетов и специальные устройства запроса для станций РУС-2 появились в войсках. Их применение в третьем периоде войны, в частности, облегчало наведение истребителей на самолеты противника. Единая система опознавания для всех видов Вооруженных Сил и гражданской авиации СССР («Кремний-1») была разработана и принята уже после войны.

После окончания войны развитие радиолокационных средств ПВО проходило в соответствии с трехлетним планом развития радиолокации на 1946-1948 гг., разработанным Советом по радиолокации и утвержденным Советом Министров. 10 июля 1946 г. СМ СССР принял постановление, посвященное вопросам радиолокации. Это был основополагающий программный документ, регламентировавший всестороннее развитие радиолокации в стране. В плане развития наземных средств ПВО постановление определило Министерство промышленности средств связи головным по наземным РЛС обнаружения и радионавигационным системам, а Министерство вооружения - по станциям управления огнем артиллерии. Радиолокация уже прошла первый этап своего развития, а ее дальнейшее развитие требовало больших капиталовложений в различных отраслях.

Стоит отметить, что в очень тяжелые первые послевоенные годы немаловажное значение для развития отечественной радиолокационной техники имело тщательное изучение германской, английской и американской техники, сравнение ее с отечественными образцами, анализ опыта применения РЛС различного назначения, типов и рабочих диапазонов. Переданные союзниками в конце войны станции кругового обзора и СОН с длиной волны 10 см и опыт применения союзниками своих РЛС убеждали в преимуществах сантиметрового диапазона (т.е. СВЧ). Освоение диапазона сантиметровых длин волн стало одной из важнейших задач советских специалистов радиолокации.

После взятия Берлина в Германии активно работала комиссия Совета по радиолокации под руководством А.И. Шокина, изучавшая германское радиолокационное оборудование. Свою роль сыграло и вывезенное по репарациям из Германии оборудование для производства радиоэлектронных устройств, и комплектующие (подарком для локаторщиков стали, например, трофейные германские конденсаторы и «пальчиковые» радиолампы) . Тем более что достигнутая было договоренность с американской компанией «Радиокорпорэйшн» об оказании технической помощи в развертывании производственной базы радиоэлектронной промышленности сорвалась не столько по финансовым, сколько по чисто политическим причинам: уже вовсю разворачивалась «холодная война», и вчерашние союзники не спешили оказывать СССР помощь в новой и столь важной отрасли.

Подготовил к печати С.Л. Федосеев.

Литература

1. История «Редута» // Радио. - 1984. №6.

2. Кисунько Г.В. Секретная зона. Исповедь Генерального конструктора. - М.: Современник, 1996.

3. Ланцберг Г.С. Академик Юрий Борисович Кобзарев. К 90-летию со дня рождения // Электросвязь. - 1995. №10.

4. Лисочкин И. Блокадное телевидение: «с приоритетом от февраля 1942-го...» // Санкт-Петербургские ведомости. - 2002, 27 февр.

5. Лобанов М.М. Развитие советской радиолокационной техники. - М.: Воениздат, 1982.

6. Лобанов М.М. Мы - военные инженеры. - М.: Воениздат, 1977.

7. Противовоздушная оборона страны (1914-1995). - М: Министерство обороны РФ. Военно-воздушные силы, 1998.

8. Петухов СИ, Шестов И.В. История создания и развития вооружения и военной техники ПВО Сухопутных войск России. Ч. 1. - М.: ВПК, 1997.

9. Симонов Н.С. Военно-промышленный комплекс СССР в 1920-1950-е гг. -М.-.РОССПЭН, 1996.

10. Цверава Г. Николай Тесла - поэт электротехники // Радио. - 1991, №7.

11. Журнал «Арсенал». - 2003, №5.

Эпизоды истории радиолокации

В ряде популярных публикаций, в телевизионных передачах и т.п. делаются попытки приписать начало работ по радиолокации и начало ее внедрения в нашей стране какому-либо одному человеку. Занятно, что обычно выбирается специалист, подвергшийся репрессиям (очевидно, не репрессированные личности журналистам просто не очень интересны). Между тем даже конспективный взгляд на раннюю историю радиолокации показывает, что на права безусловного «пионера» этой отрасли не может претендовать не только отдельный человек, но и отдельная организация и даже какая-либо одна страна.

Явление отражения радиоволн наблюдал еще Г. Герц в 1886-1889 гг. Наблюдавшиеся А.С. Поповым и его ассистентом П.Н. Рыбкиным в 1897г. прерывания радиосвязи корпусом корабля (во время опыта связи с установкой передатчика на транспорте «Европа», а приемника - на крейсере «Африка»), говорили об отражении радиоволн металлическими предметами. Вскоре последовали предложения по практическому применению этого эффекта.

В 1900 г. серб Н. Тесла предположил возможность определения местонахождения наземных и небесных объектов с помощью отраженных электромагнитных волн (в 1917 г. он же предложил использовать импульсы сверхвысоких частот для обнаружения подводных лодок).

В 1904 г. немец К. Хюльсмайер запатентовал метод и двухантенное устройство для обнаружения кораблей на большом расстоянии по отраженным от него радиоволнам. В авторской заявке (патент №165546 от 30 апреля 1904 г.) он дал подробное описание устройства для реализации своего метода, а позднее, в том же 1904 г., получил и второй патент (№169154) на усовершенствование своего метода и устройства.

10 лет спустя, в 1914 г., в России И.И. Ренгартен проводил работы по макетированию радиопеленгатора. Однако дело упиралось в возможности тогдашней радиоаппаратуры - выделить в шумах ничтожно малый по сравнению с излученным эхо-сигнал было чрезвычайно трудно.

В 1919 г. Л. Махтсу был выдан патент, в котором описывалось устройство со спиральной разверткой и визуальной индикацией положения объекта, обнаруживаемого с помощью радиоволн.

Еще через десять лет, в 1924 г. англичане Е. Эплтон и М. Барнет по отраженному непрерывному сигналу измерили высоту слоя Кеннелли-Хэвисайда (слой ионосферы, от которого отражаются радиосигналы), используя декаметро-вые радиоволны (диапазон 3-30 МГц).

В 1925 г. английские ученые Г. Брейт и М. Тьюв опубликовали результаты своей работы по определению высоты слоя Кеннелли-Хэвисайда импульсным методом - по времени запаздывания импульсного сигнала, отраженного от слоя, относительно сигнала, пришедшего вдоль поверхности Земли. В те же годы импульсная радиолокационная установка для измерения высоты слоев ионосферы была разработана в СССР.

В том же 1925 г. советские ученые и инженеры Б.А. Введенский, Ю.П. Симанов, Б.В. Халезов. А.Г. Аренберг указывали на возможность использования радиоволн УКВ диапазона (привлекшего интерес радиоспециалистов в начале 1920-х гг.) для обнаружения движущихся объектов, а Л.И. Мандельштам и Н.Д. Папалекси, проведя серию опытов по изучению свойств радиоволн, к 1930 г. разработали теорию радиоинтерференционного измерения расстояний.

В 1933 г. Б. Тревор и П. Картер, исследовавшие распространение ультракоротких радиоволн, описали явление периодического изменения величины сигнала при наложении сигнала, отраженного летящим самолетом, на сигнал передатчика.

В начале января 1933 г. инженер П.К. Ощепков в записке на имя начальника Управления ПВО предложил применить в аппаратуре радиообнаружения импульсный метод.

В октябре 1933 г. ГАУ заключило договор с Центральной радиолабораторией (ЦРЛ), руководимой М.А. Бонч-Бруевичем, и в январе 1934 г. в Гребном порту в Ленинграде начались опыты с аппаратурой радиообнаружения, созданной в ЦРЛ группой Ю.К. Коровина с помощью Ленинградского электротехнического института. При мощности в антенне 0,2 Вт и длине волны 50 см аппаратура обнаруживала самолет на расстоянии 600-700 м, но это был первый практический успех.

16 января 1934 г. в Академии наук СССР состоялось заседание, на котором рассматривались способы выявления самолетов ночью, в условиях плохой видимости и на больших расстояниях. В заседании участвовали специалисты по радиотехнике, радиофизике, оптике: академики А.А. Чернышев (7 февраля 1934 г. он подаст изобретательское предложение радиотехнической системы обнаружения, действовавшей по принципу завесы) и СИ. Вавилов, профессор Н.Д. Папалекси, помощник директора Института телемеханики В.Н. Андреев, директор ЛФТИ академик А.Ф. Иоффе и его научные сотрудники Ю.Б. Харитон, Н.Н. Семенов и P.P. Гаврух. Были приглашены: профессор А.А. Лебедев, научные сотрудники Ленинградского электрофизического института (ЛЭФИ) Б.К. Шембельи В.В. Цимбалин, профессор Ф.А. Миллер, профессор В.П. Линник, специалист по акустике профессор Н.Н. Андреев, начальник радиотехнического факультета Военной электротехнической академии РККА профессор А.А. Яковлев, инженер П.К. Ощепков, представители ГАУ и Управления ПВО РККА. Интересно, что А.Ф. Иоффе, занимавшийся проблемами распространения радиоволн, касаясь пригодного диапазона длин волн, отбросил дециметровые и сантиметровые, считая, что их переотражение в разные стороны от поверхностей самолета сильно ослабит эхо-сигнал. К тому же, метровый диапазон УКВ в те годы был наиболее освоен, имелась соответствующая передающая и приемная аппаратура. Хотя менее чем через десять лет свое преимущество показали именно короткие волны.

Вавгусте 1934г. П.К. Ощепков представил проект «Электровизор» - по сути, одну из первых программ создания радиолокационных комплексов. Не случайно 1934 г., когда были сформулированы основные теоретические предпосылки и прошла испытания первая радиолокационная аппаратура, считается годом рождения отечественной радиолокации.

В 1935 г. опытные станции радиообнаружения с непрерывным излучением для зенитной артиллерии создали группа того же Коровина уже в Центральной военно-индустриальной радиолаборатории в Горьком (магнетрон для нее разработали в Горьковском физико-техническом институте) и группа Б.К. Шембеля в ЛЭФИ. В том же ЛЭФИ М.Д. Гуревич-старший работал над импульсными методами обнаружения. Одним из исследовательских центров по радиообнаружению стал вскоре НИИ-9 Наркомтяжпрома, созданный на основе ЛЭФИ и Радиоэкспериментального института.

В 1936 г. прошел испытания созданный в НИИ-9 под руководством Б.К. Шембеля подвижный зенитный радиоискатель «Буря».

В 1936-1938 гг. работы по радиообнаружению расширялись. Велись активные исследования по различным вариантам направленных антенн. Радиолокация предъявила новые требования к радио-и электротехнической, электровакуумной промышленности. И далеко не все из них молодая индустрия могла выполнить. В опытном порядке создавалась передовая элементная база - многорезонаторные магнетроны, триоды СВЧ, отражательные клистроны, малошумящие приемо-усилительные лампы и т.д., но запуск их в серию оказался очень трудной задачей.

В 1938 г. Ленинградский физико-технический институт, занимавшийся проблемой радиообнаружения в интересах службы ВНОС, добился успеха, применяя импульсную технику.

В сентябре 1938 г. по настоянию ГАУ в НИИ-9 под председательством профессора (впоследствии академика) М.В. Шулейкина прошла научно-техническая конференция по радиообнаружению.

В конференции приняли участие М.А. Бонч-Бруевич и Б.А. Введенский, создатели первых станций радиообнаружения Ю.К. Коровин и Ю.Б. Кобзарев, инженеры НИИ-9 и Украинского ФТИ (г. Харьков, институт был подключен к работам по импульсной аппаратуре), а также военные инженеры М.И. Куликов от НИИИС РККА, М.М. Лобанов от ГАУ (Лобанов был одним из наиболее активных сторонников радиолокации, много сделавший для ее практического внедрения) и И.В. Бренев от НИМИСТ РККФ. Были заслушаны доклады о работах НИИ-9, ЦВИРЛ, УФТИ, ГАУ о задачах и технике радиообнаружения. Конференция, по сути, согласилась с планами и тематикой исследований по радиообнаружению в НИИ-9, но рекомендовала расширить исследования по импульсному методу радиообнаружения, используя дециметровый диапазон волн, с которым уже работали в Л ФТИ.

Работы велись широким фронтом, но вплоть до 1943 г. без единого плана и руководства: так, НИИ-9 работал по заказам ГАУ, ЛФТИ получал заказы от Управления ПВО, УФТИ - от НИИИС РККА.

За рубежом в это время также проводились активные работы.

В 1930 г. в США Л.Э. Хайленд предложил использовать дециметровые волны для предупреждения о приближении вражеских самолетов. В 1933-1936 гг. в США ставились опыты по радиообнаружению самолетов с использованием непрерывного излучения метрового и сантиметрового диапазонов и эффекта Доплера. В 1934 г. сотрудник Морской исследовательской лаборатории США Р. Пейдж сфотографировал на индикаторе отраженный от самолета сигнал на частоте 60 МГц. В 1936 г. опытная американская РЛС, работавшая на частоте 80 МГц, засекла самолет на расстоянии 65 км. Кроме того, изготовили первую небольшую РЛС, работавшую на частоте 200 МГц. В 1937 г. ее установили на эсминец «Лири». В 1939-1941 гг. компания «Сигнал Корпс» разработала РЛС дальнего обнаружения, одна из которых принимала участие в отражении атаки японцев на Перл-Харбор утром 7 декабря 1941 г.

В 1935 г. радиолокация получила первое коммерческое применение: во Франции на лайнере «Нормандия» установили «детектор препятствий», а в 1936 г. в порту Гавра - «радиопрожектор» для обнаружения судов, входящих в гавань и покидающих ее.

В том же году в Великобритании R Ватсон-Ватт проводил опыты по импульсной радиолокации самолетов. В 1936 г. англичане установили пять стационарных импульсных РЛС (работавших на метровых волнах) на юго-западном побережье Великобритании, в 1937 г. испытали импульсную корабельную РЛС. К июлю 1939 г. в районе между Скапа-Флоу и Портсмутом имелось около 20 РЛС, способных обнаруживать подлетающие самолеты на дальностях до 100-200 км. В первый период Второй мировой войны юг острова был прикрыт сетью РЛС («линия Чэйн Хоум»), и, по мнению ряда историков, в 1940-1941 гг. «битва за Англию» была выиграна в воздухе именно благодаря радару.

В 1934 г. в Германии по инициативе ВМФ были развернуты работы по радиолокации (для этого была создана фирма «Гема»), в 1936 г. работы над средствами радиообнаружения начала фирма «Телефункен», добившаяся в 1939 г. заказа от ВВС Германии (в чье ведение входила ПВО) на РЛС для зенитной артиллерии. Уже в 1940 г. германская ПВО располагала сетью станций дальнего обнаружения «Фрея» (дальность действия до 200 км) и «Вюрцбург» (до 80 км) дециметрового диапазона. Позднее к ним добавились станции орудийной наводки «Малый Вюрцбург» (до 40 км), «Мангейм» (до 70 км), а также стационарные станции обнаружения «Вассерман» (до 300 км). К концу 1941 г. была создана система РЛС из двух поясов - внешнего и внутреннего, а к концу 1943 г. территория Германии оказалась прикрыта практически сплошным радиолокационным полем ПВО.

В СССР в этот период использовался термин «радиообнаружение», а РЛС называли установками или станциями радиообнаружения («станциями РО»). Термин «радиолокация» (от лат. radio - «излучаю» и locatio - «размещение, расположение») стал применяться только с началом Великой Отечественной войны и получением первых зарубежных РЛС. Отметим здесь же, что английское слово «радар» (radar), также употребляемое в отечественной литературе, представляет собой аббревиатуру от RAadio Detection And Ranging - «радиообнаружение и определение расстояний».

Семен Федосеев

Тиратрон-газоразрядный электродный прибор с управляющей сеткой, использовавшийся в основном в коммутаторных устройствах.

Интерференционный метод основан на разнице фаз прямого и отраженного сигналов, пропорциональной расстоянию до объекта. Выявить эту разницу можно по биению по амплитуде и фазе результирующего сигнала, получаемого при сложении прямой и отраженной волн.

Магнетрон - генераторная двухэлектродная электронная лампа с перекрещивающимися электрическим и постоянным магнитным полями. Первый магнетрон разработал в 1921 г. А. У. Хэлл в США, промышленный его вариант был готов к 1928 г.

Клистрон - сверхвысокочастотная электронная лампа, в которой поток электронов преобразуется в группы модуляцией по скорости, лампа имеет объемный резонатор. Со временем клистроны серьезно потеснили магнетроны как СВЧ-генераторы большой мощности.

РЛС была принята в производство в 1938 г. Передающие и приёмные станции системы располагались по прямой на расстоянии до 35 км. Передатчик излучал направленный радиолуч, при пересечении которого, самолёт обнаружился приёмником по биениям прямого и отражённого сигналов. Всего было выпущено 45 установок. ТТХ станции: длина волны – 3,6-4 м; диапазон частот – 75 – 83 МГц; максимальная дальность – 35 км; пиковая мощность – 300 Вт; ширина луча по азимуту — 25°.

Станция серийно выпускалась с 1941 г. в трех вариантах: двухантенная (выпущено 12 ед.), одноантенная (выпущено 132 ед.) и стационарная (выпущено 463 ед.). Всего было выпущено 607 установок всех модификаций. Вся аппаратура станции располагалась на трёх автомобилях: одном «ЗИС-6» (передающая станция) и двух «ГАЗ-ААА» (в одной — фургон оператора с приемной аппаратурой, во второй — электрогенератор на 40 кВт). Приёмная и передающая антенны идентичны — типа «волновой канал». Обнаруженные цели оператор наблюдал на экране ЭЛТ с горизонтальной развёрткой. Станция имела приставку для определения принадлежности самолета по системе «свой-чужой». РЛС позволяла обнаруживать самолеты противника на всех высотах и непрерывно определять их дальность, азимут и скорость полета. Кроме того, при круговом синхронном вращении обеих антенн станция «РУС-2» обнаруживала группы и одиночные самолеты, находившиеся в воздухе на разных азимутах и дальностях в пределах действия своей зоны, и следила с перерывами по времени (один оборот антенны) за их перемещениями. Модификация «РУС-2с» (Пегматит) являлась упрощенным вариантом «РУС-2». Вместо двух антенн «Пегматит» имел одну приёмо-передающую. Взамен вращения кабины оператора, как в «РУС-2», здесь вращалась лишь антенна. Ламповый передатчик был заменён тиратронным. Цели на индикаторе наблюдались в виде вертикальных пульсирующих импульсов зелёного цвета. При транспортировке РЛС размещалась на двух автоприцепах. Стационарный вариант «Пегматита» предполагал перевозку станции любым транспортом в ящиках. ТТХ станции: диапазон частот — 75 МГц; длительность импульса — 12 мкс; максимальная дальность – 150 км; пиковая мощность – 70 — 120 КВт; точность по дальности – 1,5 км; точность по азимуту — 3°.

РЛС выпускалась с 1944 г. и к концу года войска получили 14 станций. Особенностью «П-3» являлась ее антенная система, состоявшая из двух антенн: азимутальной, напряжение с которой поступало на выход приемника через антенный переключатель, и вертикальной, которая при посылке импульса работала от радиопередатчика, а в период паузы вместе с азимутальной антенной переключалась на прием. «П-3» отличалась от станций «РУС-2» большей точностью наведения и надежностью в эксплуатации. Станция выпускалась как в стационарном варианте, так и мобильном. ТТХ станции: длина волны – 4,15 м; диапазон частот — 75 МГц; длительность импульса – 12 мкс; максимальная дальность – 160 км; пиковая мощность — 80-100 кВт; точность по дальности – 850 м; точность по азимуту — 1,3°.

Станция создана на базе английской «GL Mk-II» в конце 1942 г. и лишь через год поступила на вооружение ПВО. Известна модификация под обозначением «СОН-2от». Всего было построено 125 станций. Около 200 станций «GL Mk-IIIC», построенных в Канаде поступило в СССР по ленд-лизу. ТТХ станции: дальность обнаружения – 40 км; дальность сопровождения – 20 км; точность определения расстояния до самолета – 25-68 м; рабочая волна – 4 м; пиковая мощность – 250 КВт; время разворачивания – 2 часа; масса станции – 2 т; расчет – 4 человека.