Соединение деталей контактной точечной сваркой. Устройство для заточки электродов машин для контактной точечной сварки

Электроды, предназначенные для контактной сварки, производятся из металлических прутков, диаметр которых находится в промежутке от 12 до 40 мм. У них рабочая поверхность бывает либо плоской, либо в форме сферы. Чтобы соединить между собой заготовки в довольно сложную конструкцию, пользуются электродами, которые обладают смещенной поверхностью – так называемые сапожковые изделия. Подобная продукция закрепляется при помощи специального хвостовика, имеющего конус 1:10 либо 1:5.

Также в продаже можно встретить электроды, имеющие цилиндрическую поверхность, благодаря которой они будут закрепляться для работы в особых конструкциях с конусной резьбой. Кроме них, выпускается продукция со сменной рабочей частью – ее устанавливают на конус с помощью стандартной накидной гайки или попросту припрессовывают.

Электроды для контактной сварки рельефного типа по своей форме будут напрямую зависеть от способа соединения и конечной формы продукции. В большинстве случаев величина рабочей поверхности у данного электрода особой роли не играет. Это связано с тем, что площадь контакта и выбранный сварочный ток напрямую зависит от того, какую форму будут иметь заготовки в точках соприкосновения.

Существуют также электроды для соединения элементов, обладающих весьма сложным рельефом. Шовное оборудование использует продукцию, представляющую собой диск, имеющий плоскую рабочую поверхность. При этом данные изделия могут обладать даже несимметричными скосами. Такие диски закрепляются на оборудовании за счет шпонирования или прессовки.

Внутри самих электродов имеются определенные полости, по которым будет циркулировать охлаждающая жидкость в процессе проведения сварных работ. Электроды для контактной сварки точечного типа бывают сплошными, поэтому в данном случае используют так называемое охлаждение наружного типа.

Чтобы материал электрода расходовался по минимуму, ролик делается сменным. Сам электрод производится из специального сплава, сделанного на основе такого металла, как медь. В результате получается продукция, практически не обладающая сопротивлением электрическому току, превосходно проводящая тепло, устойчивая к воздействию даже довольно высоких температур. Кроме того, в горячем виде данный электрод будет сохранять свою первоначальную твердость, взаимодействие с металлом заготовки будет минимальным.

Разновидности оборудования для контактной сварки

Главной особенностью данной технологии является соединение заготовок по всей площади. Оптимальный нагрев производится за счет оплавления с помощью сварочной установки. Однако, в некоторых случаях прибегают к нагреву за счет сопротивления детали прохождению электрического тока.

Контактная точечная сварка может происходить как с расплавлением металла, так и без данной технологической особенности процесса. Контактной сваркой можно соединять металлические элементы, сечение которых находится в пределах от 1 до 19 мм, причем в большинстве случаев пользуются сваркой сопротивлением, так как расход электродного материала будет значительно ниже, а итоговое соединение получается значительно более прочным. Используется данная сварка при выполнении довольно точных работ, например, в процессе производства рельсов для создания железнодорожного полотна.

Особенности точечной контактной сварки

Подобная технология прекрасно подходит для того, чтобы соединить между собой металлические элементы, причем присоединение осуществляется как в одной, так и в нескольких точках данных заготовок. Она пользуется огромной популярностью не только в промышленности (в частности, ее часто применяют в сельском хозяйстве, при строительстве самолетов, автомобильного транспорта и так далее), но и в бытовых условиях.

Принцип действия данного метода довольно простой: электрический ток при прохождении через детали, находящиеся в непосредственном контакте друг с другом, очень сильно разогревает их кромки. Нагрев получается настолько сильным, что металл начинает быстро плавиться, сразу заготовки быстро сдавливают со значительным усилием. В результате этого и осуществляется формирование сварного соединения.

Оборудование, разработанное для использования такой технологии, предназначено для соединения между собой листов, прутьев и других металлических изделий. Ключевыми преимуществами данного метода являются следующие:

  • Отсутствие сварного соединения в традиционном его понимании;
  • Нет необходимости использовать присадочный материал, газовую среду или же флюс;
  • Оборудование очень легко в использовании;
  • Скорость выполнения работ довольно высокая.

Главным и единственным недостатком подобного способа является то, что шов получается абсолютно не герметичным.

Из чего делают электроды для контактных сварных работ?

Материал, из которого будут производиться электроды, выбирается в зависимости от того, какие требования будут предъявляться к условиям работы продукции. Стоит отметить, что электроды должны прекрасно выдерживать сжатие, температурные перепады, воздействие высоких температур, напряжения, которые будут образовываться внутри самого электрода, находящегося под серьезной нагрузкой.

Чтобы изделия получились максимально качественными, следует, чтобы электрод сохранял первоначальную форму своей рабочей поверхности, которая будет находиться в непосредственном контакте с соединяемыми деталями. Подплавление данного расходного материала ускоряет его изнашивание.

Обычно в качестве основного элемента берется медь, в нее добавляют другие элементы – магний, кадмий, серебро, бор и так далее. В результате получается материал, превосходно сопротивляющийся даже очень серьезным физическим нагрузкам. Электроды с вольфрамовым или молибденовым покрытием практически не изнашиваются в процессе эксплуатации, поэтому они в последнее время приобрели наибольшую популярность. Однако их нельзя использовать для сварки продукции из алюминия и других материалов, обладающих мягкой структурой.

Используются повсеместно. Их применяют для сварки алюминия, нержавеющей стали, цветных металлов и многих других материалов. Связка вольфрамовый электрод + защитный газ - это хороший выбор для тех, кто хочет добиться качественных сварных соединений.

Но любой сварщик скажет вам, что для достойного результата мало знать одну лишь технологию сварки. Необходимо также помнить о маленьких хитростях, которые упростят и даже улучшат результат ваших работ. Одна из таких хитростей - заточка электрода. В этой статье мы кратко расскажем, зачем она нужна и как можно заточить вольфрамовый электрод самостоятельно.

Вольфрам - это один из самых тугоплавких металлов, применяемых для изготовления электродов. Температура плавления вольфрама - более 3000 градусов по Цельсию. В условиях обычной сварки такие температуры не используются. Поэтому вольфрамовые электроды называют неплавящимися. При применении они практически не меняются в размере.

Но, несмотря на это, вольфрамовые электроды все же могут стать короче. В процессе сварки (например, при поджигании дуги или при формировании шва) электрод может стачиваться о поверхность металла. В большинстве случаев это не так уж страшно. Но порой затупленный электрод становится причиной непровара.

Как решить эту проблему? Очень просто: заточить. Заточенный вольфрамовый электрод исправно выполняет свою функцию, образуя качественные долговечные швы.

Как заточить электрод

Заточка вольфрамового электрода может осуществляться самыми разнообразными способами. Это может быть абразивный круг, химическая заточка, заточка с помощью специальной пасты или механическая заточка. Последнюю выполняют с помощью специальных приспособлений. Они могут быть как переносными, так и стационарными.


К переносным относится ручная машинка для заточки вольфрамовых электродов, а к стационарным - станок для заточки вольфрамовых электродов. На наш взгляд, применение таких приспособлений дает оптимальный результат.

Форма заточки может быть сферической или конической. Сферическая форма больше подходит для сварки постоянным током, а коническая - для сварки переменным током. Некоторые сварщики отмечают, что не замечают большой разницы при сварке электродами с разной формой заточки. Но наш опыт показал, что отличия все-таки есть. И если вы выполняете сварку профессионально, то разница будет очевидна.

Оптимальную длину заточенной части можно рассчитать по формуле Ø*2 . Т.е., если диаметр электрода равен 3 мм, то длина заточенной части должна быть 6 мм. И так по аналогии с любым другим диаметром. После заточки немного притупите конец электрода, постучав им по твердой поверхности.

Еще один важный параметр - это угол заточки электрода. Он будет зависеть от того, какую величину сварочного тока вы будете использовать.

Так, при сварке на малом значении сварочного тока для заточки будет достаточно угла в 10-20 градусов. Оптимальный угол - 20 градусов.

Угол заточки в 20-40 градусов - это хороший вариант при сварке с применением средних значений сварочного тока.

Если вы используете токи большой величины, то угол заточки может быть от 40 до 120 градусов. Но мы не рекомендуем затачивать стержень более чем на 90 градусов. Иначе дуга будет гореть нестабильно и вам будет трудно сформировать шов.

Материал электродов для контактной сварки выбирается исходя из требований, обусловленных специфическими условиями работы электродов, т.е. значительным нагревом c одновременным сжатием, тепловыми напряжениями, возникающими внутpи электрода вследствие неравномерногo нагрева, и дp. Стабильность качества зависит oт сохранения формы рaбочей поверхности электрода, контактирующей сo свариваемой деталью. Обычнo стойкость электродов oценивают по количеству точек, сваренных пpи интенсивном режиме, пpи котором диаметр торца электрода увeличивается до размеров, требующих заточки (около 20%).

Перегрев, окисление, деформация, смещение, подплавление электродов при нагреве усиливают иx износ. Чистая медь является тепло- и электропроводной, но не жаропрочной. Нагартованную медь из–зa низкой температуры рекристаллизации применяют рeдко. Чаще используются сплавы меди c добавлением легирующих элементов. Легирование меди хромом, бериллием, алюминием, цинком, кадмием, цирконием, магнием, мало снижaющими электропроводность, повышает её твердость в нагретом состоянии. Никель, железо, и кремний вводятся в медь для упрочнения электродов. Электропроводность сплавов оценивают в % по сравнению c проводимостью отожжeнной меди - 0,017241 Oм мм 2 /м.

Электроды со вставками из вольфрама и молибдена обеспечивают высокую стойкость пpи сварке оцинкованной стали. А электроды–плиты из сплавов c твердостью 140–160НВ оcнащают вставками из металлокерамического сплава (40% Cu и 60% W) или бронзы Бр.НБТ (смотрите таблицу).

Таблица. Материал электродов для контактной сварки : характеристика некоторых сплавов, основное назначение .


Материал для электродов контактной сварки, марка

Минимальная твердость НВ

Содержание легирующих элементов, % массы Тр, °С

Основное назначение

99 Сu 150– 300

Электроды и ролики для сваpки алюминиевых сплавов

1,0 Ag 250– 300

Бронза Бр.ХЦрА 0,3–0,09

0,03–0,08 Zr; 0,4–1,0 Cr; 340– 350

Электроды и ролики для сваpки алюминиевых и медных сплавов

Бронза Бр.К1 (МК)

0,9–1,2 Сd 250– 300

Бронза Бр.Х

0,4–1,0 Cr 350– 450

Электроды и ролики для сваpки углеродистых, низколегированных стaлей и

Бронза Бр.ХЦр 0,6–0,05

0,03–0,08 Zr; 0,4–1,0 Cr; 480– 500

Бронза Бр.НТБ

1,4–1,6 Ni; 0,05–0,15 Тi; 0,2–0,4 Ве; 500– 550

Электроды, ролики для сварки углеродистых, нержавеющих сталей и жаропрочных сплавов

Бронза Бр.КН1–4

3–4 Ni; 0,6–1 Si; 420– 450

Губки для сварки углеродистых, нержавеющих сталей и жаропрочных сплавов

Кадмиевая бронза Бp.Кд1 (МК)

0,9–1,2 Cd -

Электроды, ролики для сварки лeгких и медных сплавов

Хромо–циркониевая бронза Бp.ХЦp 0,3–0,9

0,07–0,15 Zr; 0,15–0,35 Cr; -

Хромовая бронза Бр.X для , никеля, титана и их сплавов

0,3–0,6 Zn; 0,4–1,0 Cr; -

Электроды и ролики

Хромо–циркониевая бронза Бp.ХЦр 0,6–0,05

0,03–0,08 Zr; 0,4–1,0 Cr; -

Никeлево–хромо–кобальтовая бронза Бp.НКХКо

≤ 0,5 Ni; ≤ 5,0 Со; ≤ 1,5 Cr; ≤ 2,0 Si -

Никелево–бериллиевая бронза Бp.НБТ

1,4–1,6 Ni; 0,05–0,15 Тi; 0,2–0,4 Be; -

Электроды, губки, ролики для сварки химически активных, тугоплавких металлов и сплавов

Хромовая бронза Бp.Х08

0,4–0,7 Сr -

Контактные губки

Кpемне–никелевая бронза Бp.КН1–4

3–4 Ni; 0,6–1,0 Si; -

Кремне–никелевая бронза Бp.НК1,5–0,5

1,2–2,3 Ni; 0,15–0,5 Ti; 0,3–0,8 Si; -

Электроды (ролики) – это инструмент, который осуществляет непосредственный контакт машины со свариваемыми деталями. Электроды в процессе сварки выполняют три основные задачи:
- сжимают детали;
- подводят сварочный ток;
- отводят теплоту, выделяющуюся в процессе сварки на участке электрод – электрод.
Непосредственно от формы рабочей поверхности электродов, контактирующей с деталями, зависит качество получаемых сварных соединений. Износ рабочей поверхности связанное с этим увеличение площади контакта электрод – деталь приводит к уменьшению плотности тока и давления в зоне сварки, а следовательно, к изменению ранее получаемых параметров литой зоны и качества соединений.
Увеличение рабочей поверхности плоского электрода при его износе в большей степени уменьшают размеры литой зоны при сварке пластичного металла, чем при сварке высокопрочного металла (Рис.1а). Износ сферической рабочей поверхности электрода, установленного со стороны тонкой детали, уменьшает ее проплавление (Рис. 1б,в).
Основные требования, предъявляемые к электродам:
- высокая электропроводность сварки
- сохранение формы рабочей поверхности в процессе сварки заданного числа точек или метров роликового шва.
При точечной и роликовой сварке электроды нагреваются до высоких температур в результате выделения теплоты непосредственно в электродах и передачи ее от свариваемых деталей.

Рис. 1. Зависимость размеров литой зоны от изменений рабочей поверхности электродов:
а - толщина 1+1 мм: 1 - сталь Х18Н10Т; 2 - сталь ВНС2
б,в - при износе сферической поверхности электрода со стороны тонкой детали

Степень нагрева электродов зависит от применяемого режима сварки и толщины свариваемых деталей. Например, при точечной сварке коррозионностойкой стали с увеличением толщины деталей от 0,8+0,8 до 3+3 мм отношение теплоты, выделяющейся в электродах, к общей теплоте, выделяющейся при сварке, увеличиваются от 18 до 40%. По результатам непосредственных измерений температура рабочей поверхности электродов при сварке единичными точками образцов толщиной 1,5-2 мм составляет: 530°С для стали ЗОХГСА, 520°С для стали Х18Н9Т, 465°С для титана ОТ4 и 420°С для сплава ВЖ98. При темпе (скорости) сварки 45 точек в минуту температура повысилась и составила соответственно: 660, 640, 610 и 580°С.

Табл. 1
Свойства металлов для электродов и роликов

Марка металла
электродов и
роликов
Удельное
электросопротивление,
Ом мм 2 /м
Максимальная
электропроводность,
% от электропроводности
меди
Минимальная твердость
по Бринелю,
кгс/мм 2
Температура
разупрочнения,
о С

Материалы для сварки
Кармиевая бронза
Бр.Кд-1 (МК)
0,0219 85 110 300 Латунь, бронза
Хромокармиевая бронза
Бр.ХКд-0,5-0,3
0,0219 85 110 370 Латунь, бронза, низколегированные стали, титан*
Хромовая бронза
Бр.Х
0,023 80 120 370 Латунь, бронза, низколегированные стали, титан*
Хромоциркониевая бронза
Бр.ХЦр-0,6-0,05
0,023 80 140 500 Низколегированные стали, титан
Сплав
Мц4
0,025 75 110 380 Коррозионностойкие, жаропрочные стали и сплавы, титан*
Бронза
Бр.НБТ
0,0385 50
170
510
Коррозионностойкие, жаропрочные стали и сплавы, титан
* Для металла толщиной 0,6 мм и менее

Для электродов и роликов используют специальные медные сплавы, обладающие высокой жаропрочностью и электропроводностью (Табл.1). Наилучшим металлом для электродов и роликов, применяемых при сварке коррозионностойких, жаропрочных сталей и сплавов и титана, является бронза Бр.НБТ, которую выпускают в виде термически обработанных катаных плит и литых цилиндрических заготовок. Из бронзы Бр.НБТ особенно целесообразно изготовлять фигурные электроды, т.к. для обеспечения необходимой твердости не требуется нагартовки, которая необходима для кадмиевой меди, сплава Мц5Б и бронзы Бр.Х.
Не рекомендуется использовать электроды и ролики из бронзы Бр.НБТ для сварки низколегированных сталей, особенно без наружного охлаждения, из-за возможного налипания меди на поверхность деталей в месте контакта с электродами.
Наиболее универсальным является сплав Мц5Б, его можно использовать для электродов и роликов при сварке всех рассматриваемых металлов. Однако сплав Мц5Б несколько сложен в изготовлении и термомеханической обработке, поэтому не получил широкого распространения. Кроме того, его стойкость при сварке коррозионностойких и жаропрочных сталей и сплавов значительно ниже, чем у бронзы Бр.НБТ. При точечной сварке коррозионностойких сталей толщиной 1,5+1,5 мм стойкость электродов из сплава Бр.НБТ составляет в среднем 7-8 тыс. точек, из бронзы Бр.Х – 2-3 тыс. точек, а при роликовой сварке – соответственно 350 и 90 м шва.
Наибольшее применение для точечной сварки получили электроды с плоской и сферической поверхностью и ролики с цилиндрической и сферической рабочей поверхностью. Размеры рабочей поверхности электродов выбирают в зависимости от толщины свариваемых деталей; для большинства металлов форма поверхности может быть плоской (цилиндрической для роликов) или сферической (Табл.2).

Табл. 2
Размеры электродов и роликов

Толщина
тонкого листа,
мм

Электроды


Ролики


D d эл R эл S f R эл
0.3
12
3.0
15-25
6.0
3.0
15-25
0.5
12
4.0
25-50
6.0
4.0 25-30
0.8
12
5.0
50-75
10.0
5.0
50-75
1.0 12
5.0
75-100
10.0
5.0
75-100
1.2 16
6.0
75-100
12.0
6.0
75-100
1.5 16
7.0
100-150
12.0
7.0
100-150
2.0
20
8.0
100-150
15.0
8.0
100-150
2.5
20
9.0
150-200
18.0
10.0
150-200
3.0
25
10.0
150-200
20.0
10.0
150-200
Примечание: Размеры D и S минимально рекомендуемые

Электроды со сферической рабочей поверхностью лучше отводят теплоту, имеют большую стойкость и менее чувствительны к перекосам осей электродов при их установке, чем электроды с плоской рабочей поверхностью, поэтому их используют при сварке на подвесных машинах (клещах).
При сварке электродами со сферической рабочей поверхностью изменение F св в большей степени влияет на размеры литой зоны, чем при использовании электродов с плоской поверхностью, особенно при сварке пластичных металлов. Однако при уменьшении I св и t св от заданного значения d и А понижаются меньше при сварке электродами со сферической поверхностью, чем при сварке электродами с плоской поверхностью.
При использовании сферических электродов площадь контакта электрод-деталь в начале сварки значительно меньше, чем в конце. Это приводит к тому, что на машинах с пологой нагрузочной характеристикой (машины с большим Z м , клещи с кабелем) плотность тока в контакте электрод-деталь при включении может быть очень высокой, что способствует снижению стойкости электродов. Поэтому целесообразно применять плавное нарастание i св , которое обеспечивает практически постоянную плотность тока в контакте.
При точечной и роликовой сварке медных и титановых сплавов предпочтительно применять электроды и ролики со сферической рабочей поверхностью. В отдельных случаях использование только сферической поверхности обеспечивает требуемое качество соединений, например при сварке деталей неравной толщины.
Электроды в большинстве случаев соединяются с электрододержателями с помощью конусной посадочной части. По ГОСТ 14111-90 на прямые электроды конусность посадочной части принята 1:10 для электродов диаметром D ≤25 мм и 1:5 для электродов D >25 мм. В зависимости от диаметра электрода практически допустимое усилие сжатия F эл=(4-5)D2 кгс .
На практике для сварки различных деталей и узлов применяются разнообразные электроды и электрододержатели. Для получения точечных соединений стабильного качества лучше применять фигурные электрододержатели, чем фигурные электроды. Фигурные электрододержатели имеют больший срок службы, а также имеют лучшие условия для охлаждения электродов, что повышает их стойкость.



Рис. 2. Электроды различных конструкций

На рис. 2 показаны некоторые электроды специального назначения. Сварку Т-образного профиля с листом выполняют с использованием нижнего электрода с прорезью под вертикальную стенку профиля (рис.2а,I). При сварке деталей неравной толщины, когда недопустима глубокая вмятина на поверхности тонкой детали, может быть применен электрод 1 со стальным кольцом 2 на рабочей поверхности, стабилизирующим площадь контакта электрод-деталь (рис. 2а,II). Наличие медной фольги 3 между электродом и деталью исключает поджоги в контакте кольцо - деталь. Для герметизации тонкостенных трубок 3 из коррозионностойкой стали с помощью точечной сварки используют электрод 1 с продолговатой рабочей поверхностью (рис. 2 а,III). Стальная насадка 2 концентрирует ток и позволяет производить смятие трубок без опасности повреждения рабочей поверхности. На рабочей поверхности электродов 1 могут быть закреплены стальные трубки 2, стабилизирующие контакт электрод-деталь и уменьшающие износ электродов (рис. 2а, IV, V).
При точечной сварке оси электродов должны быть перпендикулярны поверхностям свариваемых деталей. Поэтому детали, имеющие уклоны (плавно изменяющуюся толщину), целесообразно сваривать с использованием самоустанавливающегося поворотного электрода со сферической опорой (рис. 2б).
Для точечной сварки деталей с большим отношением толщин иногда со стороны тонкой детали устанавливают электрод (рис. 2в, I), рабочая часть которого выполнена из металла с низкой теплоэлектропроводностью (вольфрама, молибдена и т. п.). Такой электрод состоит из медного корпуса 1 и вставки 2, припаянной в корпусе. Рабочую часть электрода 3 иногда выполняют сменной и закрепляют на корпусе электрода 1 накидной гайкой 2 (рис.2в,II). Электрод обеспечивает быструю замену рабочей части при ее износе или при необходимости – перестановку вставки с другой формой рабочей поверхности.
Для роликовой сварки применяют ролики составной конструкции, у которых основание 1 из медного сплава, а припаянная к нему рабочая часть 2 – из вольфрама или молибдена (рис.2в, III). При роликовой сварке швов большой протяженности на деталях малой толщины (0,2-0,5 мм) рабочая поверхность роликов быстро изнашивается, в связи с чем ухудшается качество сварки. В таких случаях ролики имеют канавку, в которой помещена проволока их холоднотянутой меди (рис.3), перематываемая при вращении роликов с одной катушки на другую. Этот способ обеспечивает стабильную форму рабочей поверхности и многократное использование электрода-проволоки при роликовой сварке деталей малой толщины или деталей с покрытием.

Чтобы избежать частой смены электродов, для сварки на одной машине деталей различной толщины могут быть использованы многоэлектродные головки. В головку устанавливают электроды с рабочей поверхностью различной формы. При точечной сварке деталей неравной толщины важно обеспечить стабильную рабочую поверхность электрода со стороны тонкой детали. Для этой цели используют многоэлектродную головку 1; со стороны толстой детали устанавливают ролик 2 (рис.4). При износе рабочей поверхности электрода его заменяют новым, поворачивая головку. Многоэлектродные головки позволяют также без съема электродов со сварочной машины автоматически зачищать электрод, не осуществляющий в данный момент сварку.
Иногда электроды подводят ток к свариваемым деталям но не связаны непосредственно со сварочной машиной. Например необходимо сварить продольным роликовым швом тонкостенные трубы малого диаметра (10-40 мм). Для этого заготовку трубы 1 с медной оправкой 2 помещают между роликами поперечной сварочной машины (рис. 5а). Таким образом могут быть сварены швы достаточно большой длины. Для сварки деталей 1 коробчатой формы используют электрод-шаблон 2, закрепленный на оси 3 для поворота его после сварки первого шва (рис.5б).


Рис. 5. Электроды-оправки, применяемые на роликовых машинах
поперечной сварки:

а - сварка тонкостенной трубы;
б - сварка кожуха;
1- детали; 2 - электроды; 3 - ось.

Стойкость электродов и роликов зависит от условий их охлаждения. Электроды для точечной сварки должны иметь внутреннее водяное охлаждение. Для этого электроды со стороны посадочной части имеют отверстие, в которое вводится трубка, закреп ленная в электрододержателе. Вода поступает по трубке, омывает дно и стенки отверстия и через пространство между внутренними стенками электрода и трубкой проходит в электрододержатель. Конец трубки должен иметь скос под углом 45°, край которого должен отстоять от дна электрода на 2-4 мм. При увеличении этого расстояния образуются воздушные пузыри и ухудшается охлаждение рабочей поверхности электрода.
На стойкость электродов оказывает влияние расстояние от рабочей поверхности до дна охлаждающего канала. При уменьшении этого расстояния повышается стойкость электродов (число точек до переточки), но уменьшается число его возможных пере¬точек до полного износа и тем самым сокращается срок его службы. Анализируя влияние этих двух факторов на затраты электродного металла, а следовательно, и на стоимость электродов установлено, что расстояние от дна до рабочей поверхности должно составлять (0,7 -0,8)D (где D - наружный диаметр электрода). Для усиления интенсивности охлаждения при точечной сварке можно применять дополнительное водяное охлаждение электродов и места сварки. Вода в этом случае подается через отверстия в электродах или отдельно по специальной трубке наружного охлаждения. Иногда применяют внутреннее охлаждение жидкостями с температурой ниже 0°С или сжатым воздухом.
При роликовой сварке чаще применяют наружное охлаждение роликов и места сварки. Однако такой способ охлаждения не при¬годен при сварке закаливающихся сталей. Если при точечной сварке легко осуществить внутреннее охлаждение электродов то при роликовой сварке это достаточно сложная задача.
При эксплуатации электродов и роликов периодически необходимо зачищать и восстанавливать их рабочую поверхность. Электроды с плоской рабочей поверхностью обычно зачищают личным напильником и абразивным полотном, электроды со сферической рабочей поверхностью – с помощью резиновой подушки толщиной 15-20 мм, обернутой абразивным полотном.
Рабочую поверхность электродов чаще всего восстанавливают на токарных станках. Для получения рабочей поверхности правильной формы целесообразно использовать специальные фасонные резцы.

  • Параметрия контактных машин для стали и алюминия
  • Выбор портативных клещей
  • Эффективное применение машин многоточечной контактной сварки
  • ➔ Уход за электродами
  • Методы устранения сварочных дефектов
  • Точечная сварка металлов
  • Стыковая сварка металлов
  • Контактная сварка – особенности конструирования средств автоматизации и механизации
  • Эксплуатация контактных машин
  • Средства механизации и автоматизации при контактной сварке
  • Монтаж контактных машин
  • Основные технико-экономические показатели эффективности
  • Техника безопасности контактной сварки
  • Проверка контактной машины перед запуском
  • Выбор режима контактной сварки
  • Способы стыковой сварки, подготовка сварных конструкций
  • Режимы стыковой сварки оплавлением
  • Режимы стыковой сварки сопротивлением
  • Метод планирования эксперимента для выбора оптимальных параметров контактной точечной сварки.
  • Технологическая схема производства сварных узлов
  • Виды контактной сварки
  • Руководство по эксплуатации многоточечных машин для изготовления проволочных сеток МАЛС,МАКС
  • Контроллер машины многоточечной контактной сварки SA-2000AF
  • Контактная сварка со столом автоподачи SA-2000 AF для многоточечной сварки проволочной сетки
  • Руководство по эксплуатации тавровой сварки ST-1500
  • Данная таблица наглядно показывает важность обслуживания электродов. Это важно не только для сохранения качества сварного соединения, которое имеет первостепенное значение, но и для снижения лишней нагрузки на сварочное оборудование. После изучения табличных данных вы сможете сделать собственные выводы.

    ПРОФИЛЬ НАКОНЕЧНИКА

    СВАРОЧНОЕ ПЯТНО

    ТРЕБУЕМАЯ СИЛА ТОКА, А

    РЕЗУЛЬТАТ

    ПРАВИЛЬНОЕ ОБСЛУЖИВАНИЕ ЭЛЕКТРОДОВ ДЛЯ КОНТАКТНОЙ ТОЧЕЧНОЙ И РЕЛЬЕФНОЙ СВАРКИ

    Электроды для рельефной сварки

    Для обеспечения точного выравнивания, необходимого для хорошего контакта и качества сварных соединений, электроды для рельефной сварки должны быть расположены прямо на центральной линии приложения давления. В дополнение к появлению некачественных сварных соединений недостаточная центровка электродов может привести к повреждению их поверхностей [рис. 1].

    Другой серьёзной причиной плохой сварки является непараллельность поверхностей электродов. Она влечёт за собой неравномерное давление на электродах, что приводит к выплёскиванию расплавленного металла из области сварки во время сварочного цикла. В том случае, если сварка пошла через несущую часть электрода, повреждаются рельефы, и может сгореть изоляция. Кроме того, непараллельность приводит к закусыванию наконечников электродов их несущими частями во время сварки, в результате чего возникает ожог на заготовке в месте контакта со смещёнными рельефами, и возможен сдвиг относительно ответных частей сварочной оснастки [рис. 2].

    СЛЕДУЕТ
    ... держать запас электродов на станке, чтобы минимизировать простои из-за замены электрода,
    ... подтачивать электроды на токарном станке,
    ... использовать специальный 3 класс меди для наконечников электродов.
    НЕ СЛЕДУЕТ
    ... подпиливать электроды (неровная поверхность приведет либо к частичной сварке, либо к выплеску металла из сварочной зоны),

    Электроды для точечной сварки

    При контактной точечной сварке тепловая концентрация зависит от размеров и формы наконечников электродов. Сварка осуществляется по всей площади под наконечником электрода, через который проходит ток. Наконечники небольших диаметров электродов для точечной сварки разрушаются или стачиваются гораздо быстрее своих собратьев по рельефной сварке, и, следовательно, их необходимо регулярно подтачивать, чтобы поддерживать правильный контакт [рис. 3].

    СЛЕДУЕТ
    ... держать запас электродов на станке,
    ... периодически подтачивать электроды на специализированном станке,
    ... менять диаметра наконечников при работе с разными толщинами свариваемого металла.
    НЕ СЛЕДУЕТ
    ... подпиливать электроды (неровная поверхность приведет к непроварам),
    ... хранить электроды в местах, где возможно повреждение их поверхностей,
    ... использовать разводной ключ для снятия электродов.

    1. Для обеспечения идеального выравнивания, поверхности и оси электродов должны быть параллельны. Это может быть проверено путем вставки между электродами куска угля и листа чистой белой бумаги и запуска электродов в тестовом режиме. Получившийся на бумаге отпечаток покажет размер и однородность плоскости контакта между двумя поверхностями.

    2. Используйте водяную рубашку в случае необходимости и располагайте её как можно ближе к сварочной поверхности.

    3. Держите свариваемый материал чистым: без масла, пленки, грязи и других посторонних веществ.

    4. Следуйте предписанной технологической процедуре сварки.

    СВАРОЧНЫЕ ЭЛЕКТРОДЫ И ДЕРЖАТЕЛИ


    РЕКОМЕНДУЕТСЯ
    ВОСПРЕЩАЕТСЯ
    1. Используйте электроды из материала, подходящего для вашей задачи.

    2. Используйте стандартные электроды везде, где это возможно.

    3. Используйте наконечники оптимального диаметра для заданной толщины свариваемых материалов.

    4. Использование прозрачные шланги, чтобы постоянно контролировать ток воды через электроды.

    5. Подключите шланг подачи воды к соответствующему входу на держателе для того, чтобы вода сначала поступала в центральную охлаждающую трубу.

    6. Охлаждайте электроды водой, текущей со скоростью не менее 7 литров в минуту через каждый наконечник.

    7. Убедитесь, что внутренняя трубка системы охлаждения держателя вставлена в отверстие для воды на наконечнике на глубину до 6мм.

    8. Отрегулируйте внутреннюю трубку системы охлаждения держателя по высоте при переходе на наконечник другой длины.

    9. Убедитесь, что верхний конец трубки системы охлаждения держателя обрезан под углом, не вызывающим заедание наконечника и перекрытие подачи воды.

    10. Нанесите тонким слоем специальную смазку на стержень наконечника до вставки в держатель, чтобы легче было его вытаскивать.

    11. Используйте держатели эжекторного типа для легкого извлечения наконечников и чтобы избежать повреждений стержней наконечников.

    12. Держите наконечник и держатель чистыми, гладкими и свободными от посторонних субстанций.

    13. Подтачивайте электроды точечной сварки достаточно часто для сохранения качества сварки.

    14. Подтачивайте электроды на токарном станке до первоначальной формы по мере возможности.

    15. Используйте кусок кожи или резиновый молоток при выравнивании держателя или наконечника.

    16. Подавайте охлаждающую жидкость с обеих сторон диска при шовной сварке.

    17. Используйте специально разработанные накаточные диски для поддержания надлежащей формы дискового электрода для шовной сварки.

    1. Никогда не используйте неизвестные электроды или электродные материалы.

    2. Избегайте специальных, офсетных или нестандартных наконечников, когда работу можно выполнить с помощью стандартного прямого наконечника.

    3. Не используйте маленькие наконечники для сварочных работ с тяжёлыми большими заготовками и наоборот.

    4. Не забудьте включить подачу охлаждающей воды на полную мощность прежде, чем начать сварку.

    5. Никогда не используйте шланг, который неплотно садится на сосок подачи воды на держателе.

    6. Не допускайте протечек, засорения или повреждения водяной оснастки.

    7. Избегайте использования держателей с текущими или деформированными трубками.

    8. Никогда не используйте держатели электродов, которые не имеют регулируемых внутренних трубок системы охлаждения.

    9. Не давайте трубке закупориться из-за накопления примесей. Несколько капель масла с разумной периодичностью помогут сохранить трубку рабочей.

    10. Не позволяйте электродам оставаться без дела в держателях на длительные промежутки времени.

    11. Не используйте разводные ключи или аналогичные инструменты для извлечения электродов.

    12. Избегайте использования свинцовых белил или подобных соединений для герметизации протечки переходников.

    13. Никогда не позволяйте наконечнику электрода точечной сварки сплющиться до такой степени, что подточка станет затруднительной.

    14. Никогда не используйте грубые диски для подточки электродов.

    15. Не бейте по держателю или наконечнику стальным молотком при выравнивании оснастки.

    16. Избегайте в шовной сварке использования дисков слишком тонких для данной тепловой или физической нагрузки.

    17. Не давайте сварочным дискам выходить за пределы свариваемых заготовок.