Скоростная фотокамера. Видят все, но не для всех: лучшие высокоскоростные камеры

Самая быстрая видеокамера в мире способна разглядеть продвижение ультракороткого импульса света через однолитровую бутылку, подобно тому как обычные скоростные камеры в деталях снимают пролёт пули сквозь яблоко.

Раскар известен нам по целому ряду впечатляющих опытов. Достаточно вспомнить камеру, . Она, кстати, является близкой родственницей новинки – у них есть общие элементы и схожи приёмы работы со светом.

Для начала, впрочем, полюбуемся, как сферический волновой фронт от импульсного лазера прокатывается по выставленному физиками натюрморту. Каждое такое колечко пересекает сцену со скоростью света, но в замедленном ролике оно просто ползёт.

Экспериментаторы называют новую систему Trillion FPS Camera . Правда, на деле эффективное время экспозиции каждого кадра тут составляет 1,71 пикосекунды (триллионных долей секунды), так что аппарат отображает продвижение света по сцене с частотой съёмки «всего» в 0,58 триллиона кадров в секунду. Но округление авторам удивительной машины вполне можно простить.

Для сравнения, для фиксации быстротечных событий выдавала более шести миллионов кадров в секунду.

Заметим, однако, что ещё один метод замедленной съёмки, базирующийся на голографии (light-in-flight holography), позволяет достичь большего темпа — целых 100 миллиардов кадров в секунду. Увы, эта технология пригодна вовсе не для любых ситуаций, так как работает только с когерентным светом. А его лучи теряют согласованность сразу же, как только проходят сквозь разные объекты, и потому метод отказывает.

В способе съёмки Раскара свет может быть самым обычным, а лазер в роли подсветки тут применяется не из-за когерентности исходного пучка, а из-за необходимости в ультракоротких вспышках.

Новая система способна фиксировать свет, не только проходящий сквозь прозрачную цель, но и отражённый от непрозрачного тела. Видео запечатлевает продвижение световых волн по поверхности объекта. Для выявления тонкостей их взаимодействия применяется цветовое кодирование времени прихода различных импульсов (фото MIT Media Lab, Camera Culture).

В качестве основы для новой системы учёные использовали стрик-камеру (streak camera). В таком устройстве лучи света попадают на фотокатод через узкую щель.

Выбитые электроны за счёт быстроменяющегося электрического поля отклоняются в направлении, перпендикулярном щели. Далее они летят к детектору.

Таким способом временная развёртка короткого импульса света превращается в пространственную. Прибывшие чуть раньше фотоны отражаются в детекторе в несколько иной позиции, чем частицы прилетевшие чуть позднее.


Рекордная камера и подготовленная для съёмки сцена (фото MIT Media Lab, Camera Culture).

Изображения, добываемые с помощью такой камеры, получаются двумерные, передаёт институт, но при этом одно измерение в кадре является пространственным (оно расположено вдоль щели), а второе – это время.

Чтобы зафиксировать сцену полностью, изобретатели применили медленно поворачивающееся зеркало, направляющее взгляд щелевой камеры на новые и новые линии.

Для съёмки целого ролика пробег волнового фронта вдоль сцены следует повторить миллионы раз. А чтобы взаимное расположение световых полос в кадрах было правильным, необходимо точно синхронизировать импульсы лазера подсветки (частота следования – 13 наносекунд, ширина импульса – несколько фемтосекунд) и срабатывание детекторов. Последние воспринимают отражённый от объектов свет с временным разрешением примерно в пикосекунду.

Сложная оптика и электроника, необходимая для синхронизации работы всех частей комплекса, как раз составляют секрет «триллионной камеры». Но не единственный.

Важно, что снимаемые объекты остаются неподвижными, так что картина прокатывающихся по ним световых импульсов – всегда одна и та же. Это и позволяет вести съёмку одной задуманной сцены в течение нескольких минут (за это время сканирующее зеркало снимает множество узких линий в поле зрения камеры).

Если вернуться к аналогии с пулей и яблоком, то в данном случае учёные словно получают в финальном ролике один её пролёт по экрану после миллионов попыток – яблоко просто «расстреливают из пулемёта».

В зависимости от способа обработки массива данных исследователи могут создавать различные варианты видео или фотографий объектов (фотографии Di Wu, Andreas Velten, MIT Media Lab, Camera Culture).

Дальнейшая обработка колоссального массива информации (расположение фотонов и время их фиксации в детекторе) отдаётся на откуп компьютеру. Придуманные Рамешом и его коллегами математические алгоритмы позволяют сформировать из таких данных результирующий ролик, состоящий всего из 480 кадров.

Легко посчитать, что за весь фильм (он показывает нам событие, разворачивающееся на протяжении 0,8 наносекунды) световой луч успевает пробежать по сцене примерно 25 сантиметров, а за один кадр – примерно полмиллиметра.

Андреас Фельтен (Andreas Velten), один из авторов этой системы, называет её «ультимативной», мол, «во Вселенной нет ничего со столь быстрым взглядом, как у этой камеры».

Её создатели также подчёркивают, что вдохновлялись съёмками летящих пуль, впервые проведённых десятилетия назад. Тогда ключом к остановке мгновения были фотовспышки, разумеется, доступные в те годы.

Нынешние новаторы в целом используют аналогичный подход, только теперь вспышки света стали в миллиарды раз короче. Раскар называет такие импульсы «световыми пулями». Особенно эффектно они смотрятся в упомянутом вначале опыте с бутылкой.

В Швеции придумали, как снимать видео со скоростью до 5 триллионов кадров в секунду. До этого была планка в 4.4 трлн, поставленная японскими разработчиками.

Наиболее известный вариант скоростной съёмки - Phantom Flex, максимум этой камеры - до 330 000 кадров в секунду. Пользователи обычно не используют аппарат по полной, останавливаясь на частоте 2800 поскольку высокая скорость съёмки чревата плохим разрешением. Частота до 3000 fps уже даёт полноценное Full HD. Подобные устройства имеют новейшие CMOS-сенсоры и самые быстрые процессоры.


Что используют шведские специалисты из Университета Лунда, чтоб достичь рекордной скорости съёмки? Оказывается, каждый снимок включает данные о ещё нескольких кадрах. При открытии затвора камеры предмет съёмки освещается несколькими вспышками лазера. Все вспышки кодируются, причём визуально, и, используя шифровальный ключ, специалист может выделить нужное изображение из всего снимка. Разобраться, конечно, непросто. Но в обычной жизни подобные камеры и не нужны. Столь скоростной аппарат - это находка для учёных. Они теперь смогут заснять любое событие, что длится в течение пикосекунды или фемтосекунды. Можно, например, детально увидеть поведение плазмы, квантовые состояния или снимать химические реакции.


Сложно представить, насколько велика скорость около 5 триллионов кадров в секунду. Поэтому проведём аналогию. Если заснять моргание, а это 0.3 от секунды, то на просмотр видео с привычной нам скоростью в 24 кадра в секунду уйдет порядка двух тысяч лет. Впечатляет?


Технология получила название Frequency Recognition Algorithm for Multiple Exposures (FRAME) - алгоритм распознавания частоты для множественных воздействий. Шведы уже собрали рабочий прототип сверхбыстрой камеры. Если всё пойдёт по задуманному плану, то через два года готовый продукт смогут приобрести все заинтересованные в изобретении учёные. Его даже приблизительная стоимость не называется.


Показана съёмка пучка фотонов. Он прошел дистанцию в толщину бумажного листа за пикосекунду (одна триллионная доля секунды). В ролике движение замедлено в триллион раз.

Дата публикации: 05.05.2017

Ученые из Лундского университета (Швеция) создали самую скорострельную в мире камеру, которая делает снимки с частотой пять триллионов кадров в секунду.

Камеру назвали FRAME. По-английски это слово звучит как «кадр», однако является аббревиатурой от «Frequency Recognition Algorithm for Multiple Exposures» (Алгоритм частотного распознавания для множественных экспозиций). Описывая камеру, создатели поясняют, что она может «практически остановить распространение света», запечатлевая события столь короткие, как 0,2 триллионных секунды. Ученые считают, что камера поможет документировать различные явления в химии, физике, биологии и медицине – на невозможном ранее уровне.

Насколько это много – пять триллионов раз в секунду? Это пятерка с двенадцатью нулями – 5000000000000. Для сравнения – если принять продолжительность человеческой жизни за 80 лет, то в ней уложится 2,5 миллиарда секунд. Всего-то два с половиной миллиарда! Шведская суперкамера за одну секунду может сделать в 2000 раз больше кадров, чем количество секунд, которое мы проживаем за всю жизнь.

«До сих пор, единственным способом визуализировать сверхбыстрые процессы была съемки отдельных последовательных кадров», поясняет ученый Элиас Кристенссон (Elias Kristensson). «Дальше вам нужно попробовать повторить идентичные эксперименты, чтобы получить несколько отдельных изображений, которые можно объединить в фильм. Проблема этого подхода в том, что в следующий раз, когда вы повторяете эксперимент, процесс уже не будет идти идентично».

Чтобы продемонстрировать возможности камеры, разработчики из Лунда сделали видео, на котором показаны фотоны света, проходящие дистанцию, равную толщине обычного листа бумаги. Для прохождения такого расстояния свету требуется ничтожно малое время – около пикосекунды, однако камера способна запечатлеть это движение в замедленном виде.

Наверное, вы уже догадываетесь, что новая суперкамера работает не совсем так, как традиционная камера. Разработчики дают следующее упрощенное объяснение:

«Обычные высокоскоростные камеры делают последовательно снимок за снимков. Новая же технология базируется на инновационном алгоритме, когда в одном кадре делается несколько кодированных снимков. В дальнейшем они разделяются на отдельные изображения, из которых можно получить видеоряд. Коротко говоря, метод подразумевает экспонирование снимаемого процесса (например, химической реакции) светом в виде лазерных вспышек, где каждой вспышке присвоен уникальный код. Объект отражает вспышки света, которые складываются в один кадр. Однако потом их можно разделить в последовательность, используя декодирующий ключ».

Мы живем «здесь» и «сейчас». Привычное человеку пространство лежит в масштабах от километров до миллиметров, время — от лет до секунд. Наше воображение плохо вмещает вещи по‑настоящему большие, мы почти неспособны отметить события короче десятых долей секунды. А ведь именно там часто происходит самое интересное. Заглянуть за эти пределы позволяют технологии, и самые быстрые вещи фиксируются сверхскоростными видеокамерами. Бросок языка хамелеона, полет пули, ядерный взрыв, движение световой волны. Тысячные, миллионные доли секунды… и почти что триллионные.

Высокоскоростная съемка развивалась почти так же стремительно, как фотография и кино. И если в середине XIX века на получение одного кадра требовалась неподвижная экспозиция в четверть часа и дольше, то уже в 1878-м Эдвард Мейбридж смог со снимками в руках доказать, что при беге лошадь не всегда касается земли хотя бы одной ногой. Шотландский фотограф использовал хитроумную систему из 12 камер, затворы которых срабатывали от рывка нитей, привязанных поперек беговой дорожки.

Уже в 1930-х компания Eastman Kodak предлагала серийно производившуюся камеру, способную делать до 1000 кадров в секунду на ленту 16-миллиметровой пленки. Инженеры из Bell Telephone Laboratories разработали собственную систему для изучения физики дребезга релейных контактов, добравшись до планки в 5000 кадров. Их систему усовершенствовали в компании Wollensak — 10 000 кадров. Впрочем, настоящую скорость фотосъемка набрала благодаря изобретателю Цирси Миллеру, который в 1940 году запатентовал устройство с вращающимся зеркалом, обещавшее скорость миллион кадров в секунду.

Его патент лег в основу камеры, использованной участником проекта «Манхэттен» Берлином Брикснером для съемок первого в истории ядерного взрыва. Испытания «Тринити» фиксировали с 10-километрового расстояния, наставив на эпицентр сразу полсотни сложных съемочных аппаратов. В их числе была и еще одна примечательная камера, созданная профессором Массачусетского технологического института с подходящим прозвищем «Папа Флэш». Гарольд Эджертон считается отцом скоростной съемки, а его камера Rapatronic — первым образцом современных аппаратов.


Rapatronic | 1940-е годы

Эджертон уже больше десяти лет занимался высокоскоростной съемкой, когда ему предложили разработать камеру для фиксации невиданно быстрого (и невиданно секретного) события — ядерного взрыва. Для испытаний обычно использовали от четырех до двенадцати таких аппаратов, каждый из которых мог сделать лишь по одному кадру с выдержкой 10 наносекунд. Ни один протяжный механизм неспособен сработать на такой скорости, так что после каждого снимка камеры приходилось перезаряжать. Не справился бы и механический затвор, управляющий диафрагмой. Но именно тут и скрывался главный секрет Эджертона.

Свет, попадающий на объектив Rapatronic, блокировался парой поляризационных фильтров, повернутых относительно оптической оси перпендикулярно друг другу: один «отсекал» волны с вертикальной поляризацией, другой — с горизонтальной. Однако зазор между ними был заполнен прозрачной жидкостью нитробензола, способной вращать плоскость поляризации, если к ней приложить внешнее электромагнитное поле. Поле создавалось электромагнитной катушкой, запитанной от мощного конденсатора. При срабатывании такого затвора излучение с вертикальной поляризацией, пропущенное первым фильтром, слегка «подкручивалось», и второй фильтр, блокирующий все вертикальные волны, свободно его пропускал на чувствительную пленку.


Beckman & Whitley 192 | 1981 год

Еще один «пережиток» холодной войны — 726-килограммовая камера Beckman & Whitley 192 — тоже создавалась для съемки ядерных взрывов и снова отправляет нас к первым испытаниям в Неваде. Вращающиеся зеркала Цирси Миллера здесь обернулись вращением регистрирующей аппаратуры вокруг трехстороннего зеркала в центре мощной конструкции. Струя сжатого газа приводила ее в движение, разгоняя до 6000 оборотов в секунду, и неподвижные зеркала поочередно отражали свет на каждую из 82 закрепленных по краю фотокамер. Каждый кадр получал выдержку меньше миллионной доли секунды. И хотя с Rapatronic это не сравнится, 192-я позволяла снимать события более протяженные, а не отключалась после первого снимка. Похожим образом действовала и разработанная в 1950-х годах в СССР камера ФП-22. Только в ней вращалась система зеркал, так что луч стремительно обегал круг по длинной ленте специальной фотопленки, делая до 100 000 кадров в секунду. Ну а сама легендарная Beckman & Whitley 192, уже списанная, в 2000-х почти за бесценок досталась «охотнику за грозами», инженеру Тиму Самарасу. Он переделал ее на современный лад, заменив пленочные камеры на 82 10-мегапиксельные CCD-матрицы. Путешествуя с камерой в трейлере, Самарас сделал немало эффектных кадров с молниями и торнадо, пока не погиб в урагане, который пронесся над Оклахомой в конце мая 2013 года.


«Пикокамера» | 2011 год

Скорость этой системы позволяет записать даже короткий световой импульс, пока он распространяется от донышка бутылки, отражается колпачком и возвращается обратно. «Во всей Вселенной для этой камеры нет ничего слишком быстрого», — хвастались разработчики устройства. Это, конечно, некоторое преувеличение. Строго говоря, даже «триллиона кадров в секунду», как о том поспешили написать новостные издания, их система не делает: эффективное время экспозиции здесь составляет целых 1,71 пикосекунды. Но гордость разработчиков можно понять. Аппаратура, созданная в Массачусетском технологическом институте (MIT), способна уследить, как расширяется сферическая волна света, испущенного импульсным лазером. Как и у многих специальных лабораторных инструментов для измерения быстропротекающих процессов, в основе системы лежит электронно-оптическая камера. Устройство напоминает приборы ночного видения: световая вспышка, поступающая в камеру через щель, выбивает электроны с фотокатода. Они ускоряются и фокусируются в электромагнитном поле. Наконец, пучок отклоняется, двигаясь по экрану люминофора: каждому моменту времени соответствует определенный участок экрана. Такие камеры (и даже пикосекундные) производят достаточно давно, в том числе и в России. Однако они, как правило, не позволяют рассмотреть никаких деталей. Поэтому инженеры MIT дополнили устройство поворотным зеркалом, которое направляет щель камеры, «сканируя» всю сцену, и сложнейшими математическими алгоритмами, которые собирают всё в последовательную смену кадров.

Запечатлеть свадьбу лучших друзей, снять выпускной сына, разоблачить коррупционера, разместить в соцсети ролик с котиком - для всего этого нужны хорошие надежные видеокамеры. Наш рейтинг включает лучшие видеокамеры, популярные в 2018 году. Сверьтесь с возможностями своего кошелька - и выбирайте. Котики ждать не будут!

Какие бывают видеокамеры?

По назначению и уровню исполнения:

    Классические любительские модели . Не требуют от владельца высокой операторской квалификации, обладают множеством автоматических настроек, относительно просты в управлении, легки и компактны. Разброс цен довольно широк, но в целом можно говорить о доступности. Выбирать есть смысл из продуктов известных и проверенных брендов. А вот совсем бюджетные варианты (за 5-6 тыс. руб.) наверняка разочаруют, поскольку качество снимаемого ими видео на уровне возможностей средненького смартфона.

    Профессиональные камкордеры . В техническом плане и по комплектации оснащены гораздо лучше. Качество видео, характеристики, сетевые функции, точность регулировок - всё на самом высоком уровне. Понятное дело, что подобное оборудование не для дилетантов, требуются определённые навыки и даже талант. Да и ценник скорее соответствует бюджету корпоративных закупок либо личному (спонсорскому) кошельку хорошо зарабатывающих независимых репортёров, блогеров.

    Иногда для видеокамер применяется неофициальное определение «полупро» . Чётких рамок для ввода в данную категорию не существует. Ведь некие монстры кино или телевизионной индустрии могут называть так даже крутые модели за 150-500 тыс., а старшими по иерархии считать «комбайны» дороже миллиона. Только вот наш рейтинг не для них. Здесь правит бал свобода выбора. Хотите считать свою любительскую камеру полупрофессиональной, основываясь на картинке отменного качества и присутствии ручных настроек? Хозяин - барин! Пусть будет так!

По разрешению видео:

    На сегодняшний день актуальны два формата: Full HD и 4K. Возможны варианты съёмки с более низкими показателями (HD 720p) и с разной частотой кадров/с и битрейтом. Весьма неплохо, если в камере есть поддержка расширенного динамического диапазона (HDR, WDR и т.п.).

Лучшие фирмы - производители видеокамер

Несомненными лидерами и законодателями мод на рынке цифровых видеокамер традиционно признаются компании Sony и Panasonic (именно в таком порядке). Несколько уступают им в любительском сегменте другие «японцы» Canon и JVC . К чести двух последних брендов, в классе профессиональных моделей о каком-то отставании речи уже не идёт. И аппетиты не зашкаливают, как, например, у того же Sony.