С каким содержанием углерода сталь считается высокоуглеродистой. Углеродистые стали, их виды и марки

Сталь - продукт черной металлургии, главный Из него производят строительную арматуру, металлопрокат различного профиля, трубы, детали, механизмы и инструменты.

Производство стали

Черная металлургия занимается и стали. Чугун - твердый, но не прочный материал. Сталь - прочный, надежный, пластичный, склонный к используемый в литейном производстве, прокатке, ковке и штамповке.

Существует несколько способов выплавки стали:

  1. Конверторный. Оборудование: Шихта (исходные материалы): стальной металлолом, известняк. Производятся только углеродистые стали.
  2. Мартеновский. Оборудование: мартеновская печь. Шихта: жидкий чугун, стальной металлолом, железная руда. Универсален как для углеродистых, так и для легированных сталей.
  3. Электродуговой. Оборудование: электродуговая печь. Шихта: стальной металлолом, чугун, кокс, известняк. Универсальный метод.
  4. Индукционный. Оборудование: индукционная печь. Шихта: стальной и чугунный металлолом, ферросплавы.

Суть процесса производства стали - уменьшение количества негативных химических включений с целью получения металла, который в народе называют «железом», а точнее - железоуглеродистого сплава с содержанием углерода в нем не больше 2,14%.

Процессы раскисления

Для стали на завершающем этапе выплавки характерен процесс кипения, на который влияют присущие в ней азот, водород, окиси углерода. Такой сплав в затвердевшем состоянии имеет пористую структуру, которая убирается прокаткой. Он мягкий и пластичный, однако недостаточно прочный.

Процесс раскисления заключается в деактивации кипящих примесей путем ввода в сплав ферромарганца, ферросилиция, алюминия. В зависимости от количества остаточных газов и раскислительных элементов, сталь может быть полуспокойная или спокойная.

Готовую сталь требуемой степени раскисления разливают в изложницы для кристаллизации и использования на последующих технологических этапах изготовления готовой стальной продукции.

Классификация углеродистой стали

Всю сталь, существующую на мировом рынке, можно разделить на углеродистую и легированную. Все марки углеродистой стали разделяются по разным группам классификатора и особенностям обозначения.

Исходя из основных классификационных признаков, выделяют:

  1. Углеродистые конструкционные стали. В них карбона меньше 0,8%. Они используются для изготовления арматуры, прокатной продукции и литья.
  2. Углеродистые инструментальные стали, которые содрежат карбон в количестве от 0,7% до 1,3%. Их используют для инструментов, оборудования приборов.

По способам раскисления:

  • кипящие - раскислительных элементов (РЭ) в составе меньше 0,05%;
  • полуспокойные - 0,05%≤РЭ≤0,15%;
  • спокойные - 0,15%≤РЭ≤0,3%.

По химическому составу:

  • малоуглеродистые (0,3%≤С);
  • среднеуглеродистые (0,3≤С≤0,65%);
  • высокоуглеродистые (0,65≤С≤1,3%).

В зависимости от микроструктуры:

  • доэвтектоидные - в такой стали углерода в составе меньше 0,8%;
  • эвтектоидные - это стали с содержанием углерода 0,8%;
  • заэвтектоидные - стали с содержанием углерода свыше 0,8%.

По качеству:

  1. Обычного качества. Серы здесь содержится меньше 0,06%, фосфора - не больше 0,07%.
  2. Качественные стали. Они не содержат серы и фосфора больше 0,04%.
  3. Высококачественные. Количество серы тут не превышает 0,025%, а фосфора - не больше 0,018%.

По основному стандарту марки углеродистой стали распределяют на:

  • конструкционные обычного качества;
  • конструкционные качественные;
  • инструментальные качественные;
  • инструментальные высококачественные.

Особенности маркировки конструкционной стали обыкновенного качества

Стали обыкновенного качества содержат: С - до 0,6%, S - до 0,06%, P - до 0,07%. Давайте рассмотрим, как маркируется эта углеродистая сталь. ГОСТ 380 определяет следующие нюансы обозначения:

  • А, Б, В - группа; А - не обозначается в марках;
  • 0-6 после букв «Ст» - порядковый номер, в котором зашифрован химический состав и (или) механический свойства;
  • Г - наличие Мангана Mn (марганца);
  • кп, пс, сп - степень раскисления (кипящая, полуспокойная, спокойная).

Цифры от 1 до 6 после обозначения степени раскисления через тире - это категории. При этом первая категория не обозначается никак.

Буквы же М, К в начале марки могут означать металлургический способ производства: мартеновский или кислородно-конверторный. Между прочим, углеродистые стали обыкновенного качества представлены количественным составом марок, примерно в 47 штук.

Классификация конструкционных сталей обыкновенного качества

Углеродистые стали обыкновенного качества разделяются на группы.

  • Группа А: стали, которые должны точно соответствовать заданным механическим свойствам. Потребителю они поставляются чаще всего в виде листового и многопрофильного проката (листы, тавры, двутавры, арматура, заклепки и корпуса). Марки: Ст0, Ст1 - Ст6 (кп, пс, сп), категории 1-3, в том числе Ст3Гпс, Ст5Гпс.
  • Группа Б: стали, которые должны быть регламентированы необходимым химическим составом и свойствами. Изготавливается литье и прокат, который будет подвергаться дополнительной механической обработке давлением в горячем состоянии (ковка, штамповка). Марки: БСт0, БСт1 (кп-сп), БСт2 (кп, пс), БСт3 (кп-сп, в том числе БСт3Гпс), БСт4 (кп, пс), БСт 6 (пс, сп), категории 1 и 2.
  • Группа В: стали, которые должны соответствовать нужным химическим, физическим, механическим и технологическим свойствам. Этой группе присуще разнообразие марок, из которых изготавливается пластичный листовой прокат, прочная арматура для работы в зонах значительных температурных перепадов, ответственные детали (болты, гайки, оси, пальцы поршней). Всю продукцию различного состава, свойств и марок этой группы объединяет хорошая технологическая свариваемость. Марки: ВСт1-ВСт6 (кп, пс, сп), ВСт5 (пс, сп), в том числе ВСт3Гпс, категории 1-6.

Конструкционные стали обыкновенного качества - сплавы, имеющие широкое разноплановое использование в промышленности.

Маркировка углеродистой качественной стали

Углеродистые качественные стали имеют в составе S и P не более 0,04%, соответственно.

Маркировка (ГОСТ 1050-88):

  • цифры 05-60 - зашифрованное наличие углерода (минимальное - 0,05%, максимальное - 0,6%);
  • кп, пс, сп - степень раскисления («сп» не обозначается);
  • Г, Ю,Ф - содержат марганец, алюминий, ванадий.

Исключения в маркировке

Углеродистые качественные стали в своей маркировке имеют исключения:

  • 15К, 20К, 22К - качественные стали, применимы в котлостроении;
  • 20-ПВ - углерода - 0,2%, сталь применима в изготовлении труб методом горячей прокатки, в котлостроении и монтаже отопительных систем, содержит медь и хром;
  • ОсВ - сталь для изготовления вагонных осей, содержит никель, хром, медь.

Для всех марок качественных сталей характерна возможная необходимость использования термической (к примеру, нормализация) и химико-термической обработки (к примеру, цементация).

Классификация углеродистых качественных сталей

Этот вид углеродистых сталей можно условно разделить на 4 группы:

  1. Высокопластичный материал, применимый для холодной механической обработки (прокатки), листовой и трубный прокат. Марки - сталь 08пс, сталь 08, сталь 08кп.
  2. Металл, используемый в горячей прокатке и штамповке, который будет работать в термически агрессивных условиях. Марки - от сталь 10 до сталь 25.
  3. Сталь, нашедшая применение в изготовлении ответственных деталей, в том числе пружин, рессор, муфт, болтов, валов. Марки - от сталь 60 до сталь 85.
  4. Стали, требующие надежной эксплуатации в агрессивных условиях (к примеру, цепь гусеничного трактора). Марки сталь 30, сталь 50, сталь 30Г, сталь 50Г.

Также возможно разделить на 2 группы все известные марки углеродистой стали из класса качественных: конструкционные обычные и конструкционные марганецсодержащие.

Применение углеродистой конструкционной стали

Класс стали по качеству Марка Применение
обычного качества Ст0 арматура, обшивка
Ст1 тавры, двутавры, швеллеры
Ст3Гсп строительный прокат
Ст5сп втулки, гайки, болты
Ст6пс строительные ломы
ВСт4кп фасонный, листовой, сортовой прокат для прочных конструкций
качественная Сталь10 трубы для котлов, штамповки
Сталь15 детали высокой пластичности, кулачки, болты, гайки
Сталь18кп сварные конструкции
Сталь 20пс оси, вилки, пальцы, штуцера, патрубки
Сталь50 зубчатые колеса, муфты сцепления
Сталь60 шпиндели, шайбы, пружинные кольца

Углеродистые инструментальные стали отличаются высокой прочностью и ударной вязкостью. Они обязательно подлежат многоступенчатой термообработке.

Марочное обозначение (ГОСТ 1435-74):

  • У - углеродистая инструментальная;
  • 7 -13 - содержание углерода в ней 0,7-1,3%, соответственно;
  • Г - наличие в составе марганца;
  • А - высококачественная.

Исключениями из основных принципов маркирования углеродистых инструментальных сталей - материал для деталей часовых механизмов А75, АСУ10Е, АУ10Е.

Требования к углеродистым инструментальным сталям

В соответствии с ГОСТом, инструментальные стали должны соответствовать ряду характеристик.

Необходимые физико-химические и механические свойства: качественные показатели твердости, ударной вязкости, прочности, стойкости к температурным изменениям во время эксплуатации (во время резки, сверления, ударных нагрузок), устойчивость к коррозии.

Заданные технологические свойства:

  • стойкость к негативным процессам технологии резания (налипание стружки, наклеп);
  • хорошая обрабатываемость точением и шлифованием;
  • податливость к термообработке;
  • стойкость к перегреву.

Для повышения качественных механических и технологических показателей инструментальные стали подвергают многоступенчатой термообработке:

  • отжиг исходного материала перед изготовлением инструментов;
  • закалка (охлаждение в растворах солей) и последующий отпуск готовых изделий (в основном, низкий отпуск).

Полученные свойства определяются химическим составом и полученной микроструктурой: мартенсит с цементитными и аустенитными включениями.

Использование углеродистых инструментальных сталей

Применяются описываемые стали для изготовления всевозможных инструментов: режущих, ударных, вспомогательных.

  • Сталь У7, У7А - молотки, зубила, топоры, стамески, кувалды, долота, рыболовные крючки.
  • Сталь У8, У8А, У8Г - пилы, отвертки, кернеры, зенковки, фрезы, плоскогубцы.
  • Сталь У9, У9А - слесарный инструмент, инструмент для резки по дереву.
  • У11, У11А - рашпили, метчики, вспомогательный инструмент для штамповки и калибровки.
  • У 12, У12А - развертки, метчики, измерительные инструменты.
  • У13, У13А - напильники, бритвенные и хирургические инструменты, штамповочные пуансоны.

Рациональный выбор марки углеродистой стали, технологии ее термообработки, понимание ее свойств и особенностей - залог длительной службы производимых, обрабатываемых или используемых конструкций или инструментов.

Благодаря своим прочностным характеристикам и доступной цене углеродистая сталь является весьма распространенным сплавом. Его главные элементы - это железо и углерод с минимумом присесей. Из углеродной стали производят различную машиностроительную продукцию, детали трубопроводов и котлов, инструменты. В строительстве сплавы тоже нашли широкое применение.

Основные характеристики

В зависимости от основного своего назначения углеродистые стали делятся на инструментальные и конструкционные, легирующих элементов в их составе практически нет. От обыкновенных стальных сплавов они отличаются еще и тем, что имеют в составе значительно меньше базовых примесей: марганца, магния, кремния. Содержание главного элемента - углерода - варьируется в довольно широких пределах . В составе высокоуглеродистой стали содержится 0,6−2% C, среднеуглеродистой - 0,3−0,6%, низкоуглеродистой - до 0,25%.

Основной элемент определяет свойства и структуру. Во внутренней структуре сплавов с менее чем 0,8% C (сталь доэвтектоидная) - преимущественно перлит и феррит, а при увеличении концентрации главного элемента формируется вторичный цементит.

Представленные стали с преобладанием ферритной структурой высоко пластичны и имеют низкую прочность. Если в структуре преобладает цементит , металл характеризуется высокой прочностью, однако и большой хрупкостью. При повышении содержания C до 0,8−1% растет прочность и твердость, но сильно ухудшается вязкость и пластичность.

Количественное содержание углерода сказывается на технологических характеристиках, в частности, на свариваемости, легкости обработки резанием и давлением.

  • Из низкоуглеродистых сталей изготавливают детали и конструкции, не предназначенные для значительных нагрузок.
  • Характеристики среднеуглеродистых сталей делают их основным конструкционным материалом, который используется в производстве конструкций и деталей для транспортного и общего машиностроения.
  • Высокоуглеродистые сплавы оптимальны для изготовления деталей, которые должны иметь повышенную износостойкость, в производстве измерительного и ударно-штампового инструмента.

Металл, как и иные стальные сплавы, в составе содержат примеси:

  • кремний;
  • фосфор;
  • марганец;
  • азот;
  • серу;
  • водород;
  • кислород.

Кремний и марганец - это полезные примеси, которые вводятся в состав на стадии выплавки для раскисления. Фосфор и сера - вредные примеси , ухудшающие качественные характеристики сплава.

Считается, что легирование и углеродистые виды несовместимы, тем не менее с целью улучшения их технологических и физико-механических характеристик может выполняться микролегирование с помощью добавления различных добавок:

  • бора;
  • титана;
  • циркония;
  • редкоземельных элементов.

С их помощью не удастся превратить металл в нержавейку, но значительно улучшить свойства получится.

Классификация по степени раскисления

На разделение на типы влияет, в частности, степень раскисления. В зависимости от этого параметра наши сплавы делят на полуспокойные, спокойные и кипящие.

Более однородную внутреннюю структуру имеют спокойные стали, чье раскисление достигается путем добавления в расплавленный металл алюминия, ферросилиция и ферромарганца . Благодаря тому, что сплавы нашей категории полностью раскислились в печи, в их составе отсутствует закись железа. Остаточный алюминий, препятствующий росту зерна, обеспечивает мелкозернистую структуру. Она и практически абсолютное отсутствие растворенных газов позволяет получить качественный металл для изготовления из него самых ответственных деталей и конструкций. Наряду с плюсами у спокойных сплавов есть большой минус - достаточно дорогая выплавка.

Есть более дешевые, хотя и менее качественные, углеродистые сплавы, при выплавке которых используют минимум специальных добавок. В структуре такого металла из-за того, что процесс раскисления в печи не довели до конца , есть растворенные газы, негативно отражающиеся на характеристиках. Азот, например, плохо влияет на свариваемость и провоцирует образование трещин в области шва. Развитая ликвация в структуре сплавов приводит к тому, что металлопрокат, сделанный из них, отличается неоднородностью по структуре и механическим характеристикам.

У полуспокойных сталей промежуточное положение по свойствам и степени раскисления. Перед заливкой в изложницы в состав их вводится немного раскислитилей, благодаря которым затвердеванием металла происходит практически без кипения , но выделение газов в нем продолжается. В результате получается отливка, в структуре которой меньше газовых пузырей, чем в кипящих сталях. Эти внутренние поры при последующей прокатке металла завариваются практически полностью.

Большая часть полуспокойных углеродистых сталей используется как конструкционные материалы.

Производство и деление по качеству

Углеродистые стали получают путем использования разных технологий. Различают:

  • качественные углеродистые стали;
  • высококачественные стальные сплавы;
  • углеродистые стальные сплавы обыкновенного качества.

Сплавы обыкновенного качества получают в мартеновских печах, а из них формируются большие слитки. К плавильному оборудованию, использующемуся для получения таких сталей, относятся, в частности, кислородные конвертеры. В сравнении с качественными стальными сплавами, в металле может содержаться много вредных примесей, что отражается на характеристиках и стоимости производства.

Сформированные и застывшие слитки прокатывают горячими или холодными. Горячей прокаткой получают сортовые и фасонные изделия, тонколистовой и толстолистовой металл, широкие металлические полосы. Холодной прокаткой получают тонколистовой металл.

Для производства качественной и высококачественной стали используются мартеновские печи и конвертеры, а также плавильные печи, которые работают на электричестве.

К составу, а именно к наличию в структуре вредных и неметаллических примесей, ГОСТ предъявляет жесткие требования. В высококачественных сталях должно быть не более 0,04% серы и не более 0,035% фосфора . Высококачественные и качественные стальные сплавы благодаря строгим требованиям к способу выплавки и характеристикам имеют повышенную чистоту структуры.

Применение и маркировка

Инструментальные сплавы, в которых 0,65−1,32% C, используются для изготовления различного инструмента. Для улучшения механических свойств инструментов делают закалку материала изготовления.

Из конструкционных сплавов делают детали для разного оборудования, элементы конструкций строительного и машиностроительного назначения, крепежные детали и прочее. Из конструкционной стали делается проволока углеродистая, которая используется в быту , в производстве крепежа, в строительстве, для изготовления пружин. После цементации конструкционные сплавы успешно используются в производстве деталей, подвергающихся при эксплуатации серьезному поверхностному износу и испытывающих большие динамические нагрузки.

Маркировка говорит о химическом составе сплава и о его категории. В обозначении углеродистой стали обыкновенного качества есть буквы «ст». ГОСТ оговаривает семь условных номеров марок (0−6), также указывающихся в обозначении. Степень раскисления обозначают буквы «кп», «пс», «сп», проставленные в конце маркировки. Марки высококачественных и качественных сталей обозначаются цифрами, которые указывают на содержание в сплаве C в сотых долях процента.

О том, что сплав инструментальный, можно понять по букве «У» в начале маркировки. Цифра, следующая за этой буквой, говорит о содержании C в десятых долях процента. Литера «А», если таковая присутствует в обозначении инструментальной стали, указывает на улучшенные качественные характеристики сплава.

Стали с повышенным содержанием углерода могут быть менее склонными к образованию структур малой пластичности. При воздействии структурных и сварочных напряжений металл малой пластичности может разрушиться. Этому способствует наличие в нем и его сварочном шве диффузионного водорода. Для предупреждения появления холодных трещин применяются способы, позволяющие устранить факторы, способствующие появлению таких недостатков.

Краткие сведения о составе и свойствах среднеугле-родистых конструкционных сталей. К среднеуглеродистым конструкционным сталям по классификации, принятой в сварочной технике, относятся стали, содержащие 0,26-0,45% С. Отличие составов среднеуглеродистых от низкоуглеродистых сталей в основном состоит в различном содержании углерода (табл. 9-20 и 9-21). К этой же группе относится сталь с повышенным содержанием марганца (марок ВСтбГпс, 25Г, ЗОГ и 35Г).

Для стали ВСт4сп ударная вязкость в зависимости от толщины листовой стали при расположении образца для испытания на ударный изгиб поперек направления проката следующая:

Для сортовой и фасонной стали ВСт4сп при расположении образца для испытания на ударный изгиб вдоль направления проката эта зависимость следующая:

Очевидно, что различные плавки стали, содержащие углерод по нижнему или по верхнему пределу (например для стали Ст5 0,28 или 0,37% С), отличаются свойствами и имеют различную свариваемость. Однако этого обычно не учитывают при выборе технологии сварки, которую рассчитывают на наиболее высокое для данной марки стали содержание углерода.

Среднеуглеродистые стали находят применение в судостроении, машиностроении и других отраслях промышленности. Для сварно-литых и сварно-кованых конструкций находят применение преимущественно стали 35 и 40.

Сварка среднеуглеродистых сталей. Повышенное содержание углерода предопределяет значительные трудности сварки этих

сталей. К ним относятся низкая стойкость металла шва против кристаллизационных трещин, возможность образования малопластичных закалочных структур и трещин в околошовной зоне и трудность обеспечения равнопрочности металла шва с основным металлом.

Для преодоления этих трудностей и в первую очередь для повышения стойкости металла шва против кристаллизационных трещин при всех видах сварки плавлением стремятся снизить содержание углерода в металле шва. Это обычно достигается за счет применения электродных стержней и электродной проволоки с пониженным содержанием углерода и уменьшения доли основного металла в металле шва. Стремятся также обеспечить получение швов с большим значением коэффициента формы и применяют предварительный и сопутствующий подогрев, двухдуговую сварку в раздельные ванны и модифицирование металла шва.

Для сварки среднеуглеродистых сталей чаще всего применяют предварительный подогрев до температуры 250-300° С. За счет предварительного подогрева удается повысить на 0,01-0,02% допускаемое содержание углерода в металле шва, при котором еще не образуются трещины, и предупредить образование закалочных структур в околошовной зоне. Однако сварка с подогревом обладает серьезными эксплуатационными недостатками. Кроме того, чрезмерный подогрев может вызвать образование трещин вследствие увеличения провара основного металла и связанного с этим повышения содержания углерода в металле шва.

Для снижения доли основного металла в металле шва дуговую сварку среднеуглеродистых сталей, как правило, ведут с разделкой кромок на режимах, обеспечивающих минимальное пропла-вление основного металла и максимальное значение коэффициента формы шва. Для иллюстрации сказанного на рис. 9-12 показаны угловые швы, сваренные под флюсом на режимах, типичных для сварки низкоуглеродистой (а) и среднеуглеродистой (б) стали.

Для повышения доли электродного металла в металле шва принимают также меры по увеличению коэффициента наплавки. При механизированных способах сварки это достигается применением сварочной проволоки малого диаметра (2-3 мм) и минимального сварочного тока. Лучшие результаты получаются при постоянном токе прямой полярности. Сварку под флюсом среднеуглеродистых сталей ведут на режимах, не характерных для этого высокопроизводительного способа, в связи с чем он не получил широкого применения при изготовлении конструкций из среднеуглеродистых сталей.

Эффективным и надежным средством достижения равнопрочное™ металла шва при низком содержании в нем углерода служит дополнительное легирование элементами, упрочняющими феррит. При сварке среднеуглеродистых сталей для достижения равнопрочное™ достаточно дополнительно легировать шов марганцем и кремнием. Для сварки под флюсом применяют флюсы АН-348-А и ОСЦ-45 и сварочную проволоку Св-08А, Св-08ГА и Св-ЮГ2. При этом необходимое повышенное содержание в шве кремния и марганца достигается частично путем восстановления их из флюса. Этому способствует применение тонкой проволоки и малых токов, при которых восстановление кремния и марганца протекает более интенсивно.

Для ручной сварки среднеуглеродистых сталей применяют электроды с фтористо-кальциевым покрытием УОНИ-13/55 и УОНИ-13/45, обеспечивающие достаточную прочность и высокую стойкость металла шва против образования кристаллизационных трещин. Чтобы избежать образования малопластичных и хрупких закалочных структур в околошовной зоне, при сварке среднеуглеродистых сталей следует замедлить остывание изделий путем снижения скорости сварки, предварительного подогрева металла, сварки двумя и более раздвинутыми дугами. Чем больше содержание углерода в стали, тем выше должна быть температура подогрева металла при сварке. Даже при использовании всех указанных приемов сварные соединения на среднеуглеродистой стали чаще всего получаются недостаточно пластичными, так как закалка основного металла в околошовной зоне полностью не предотвращается. Если к сварному соединению предъявляются требования высокой пластичности, то для выравнивания свойств приходится применять последующую термообработку, чаще всего закалку с отпуском.

Технология сварки среднеуглеродистых сталей в углекислом газе, как и сварка их покрытыми электродами и под флюсом,

основана на снижении доли основного металла в металле чшва и обеспечении благоприятной формы провара. В производстве сварка в углекислом газе для изготовления конструкций из среднеуглеродистых сталей применяется мало.

Благодаря возможности в широких пределах изменять коэффициент формы металлической ванны и медленному остыванию металла околошовной зоны при электрошлаковой сварке создаются благоприятные условия для обеспечения высокого качества сварного соединения среднеуглеродистой стали. Однако при сварке металла, содержащего более 0,3% С, рекомендуется проводить предварительный и сопутствующий подогрев конструкции (особенно при кольцевых швах) до температуры 180-200° С. Высокая стойкость металла шва против образования кристаллизационных трещин обеспечивается при подаче электродной проволоки со скоростью, не превышающей критических значений (см. рис. 9-11).

При электрошлаковой сварке увеличение коэффициента формы металлической ванны, при прочих равных условиях, приводит к увеличению содержания в ней углерода (рис. 9-13). При этом, однако, стойкость металла шва против образования кристаллизационных трещин не снижается, так как одновременно с ростом коэффициента формы металлической ванны растет критическое содержание углерода.

Серьезной задачей при электрошлаковой сварке сталей с содержанием более 0,33% С является обеспечение равнопрочное™ металла шва с основным металлом. Эта задача частично решается путем применения сварочных проволок Св-10Г2 или Св-12ГС и перехода углерода из основного металла. Содержание углерода в шве доходит до 0,22-0,24%. Однако даже при этом прочностные свойства металла шва находятся на нижнем уровне свойств основного металла (см. табл. 9-19). Для повышения прочности металла шва рекомендуется применять сварочную проволоку, обеспечивающую многокомпонентное легирование. Высокой ударной вязкости металла шва и участка крупного зерна околошовной зоны для сталей этой группы так же, как и для низкоуглеродистых сталей, можно достигнуть пока только нормализацией.

Режим электрошлаковой сварки среднеуглеродистых сталей, кроме скорости подачи проволоки, аналогичен приведенному выше в §9-1. Скорость подачи сварочной проволоки выбирают исходя из данных рис. 9-11. Например, если необходимо сварить металл толщиной 120 мм с 0,35% С, суммарная скорость подачи электродной проволоки составит 324 м/ч (2,7x120). При сварке двумя проволоками скоро, гь подачи каждой из них будет вдвое меньше и составит 162 м/ч. В случае трех проволок скорость подачи каждой из них равна 108 м/ч. При этом достигается высокая стойкость металла шва против образования кристаллизационных трещин при сварке прямолинейных швов и погонной части кольцевых швов. Замыкание кольцевого шва желательно производить с еще несколько меньшей скоростью подачи проволоки и большей температурой сопутствующего подогрева.

При сварке среднеуглеродистой стали плавящимся мундштуком и электродной пластиной режим выбирают в зависимости от состава основного металла. Для примера ниже приведен режим электрошлаковой сварки бандажей цементных печей, изготовляемых из стали 35Л толщиной 300 мм (по данным Г. 3. Волошке-вича и др.):

Режим электрошлаковой сварки станины прокатного стана из стали 25Л толщиной 450 и 750 мм электродной пластиной (по данным Ю. Н. Зайцева и Ю. А. Стеренбогена) приведен ниже:

После сварки станину подвергают термообработке (нормализации и высокому отпуску). При этом обеспечивается равнопроч-ность сварного соединения с основным металлом. В состоянии после сварки сварное соединение также имеет вполне удовлетворительные механические свойства.

Сварка высокоуглеродистых сталей. К высокоуглеродистым сталям по принятой в сварочной технике классификации относят стали с содержанием 0,46-0,75% С. Стали такого состава, как правило, не применяют для изготовления конструкций, но широко используют для изготовления деталей машин, подвергающихся наплавке.

Необходимость сварки подобных сталей возникает главным образом при ремонтных работах. Технология их сварки строится на той же основе, что и наплавка.

По условиям выплавки в углеродистых сталях содержатся следующие примеси: углерод, кремний, марганец, сера, фосфор, кислород, водород и азот. Эти примеси называются постоянными (или неизбежными). На свойства углеродистых сталей решающее влияние оказывает углерод. Например, с повышением содержания углерода твердость и прочность стали повышаются, а пластичность и ударная вязкость снижаются. Некоторые марки полуспокойных ста­лей выплавляются с повышенным содержанием марганца.

В соответствии с ГОСТами выплавляются следующие основные виды углеродистых сталей: низкоуглеродистые (менее 0,3 % С), среднеуглеродистые (0,3–0,7 % С) и высокоуглеродистые (более 0,7 % С); по назначению: на конструкционные обыкновенного качества и качественные (в том числе – цементуемые, улучшаемые, высокопрочные и рессорно-пружинные), инструментальные для режущего и измерительного инструмента, а также штампов холодного (менее 200 °С) и горячего прессования.

Сталь углеродистая обыкновенного качества конструкционная выплавляется по ГОСТ 380–85 и поставляется потребителю в виде прутков, листов и других профилей проката. В зависимости от назначения и гарантируемых металлургическим заводом характеристик сталь подразделяется на три группы: А, Б, В, которые, в свою очередь, делятся на категории.

Сталь группы А поставляется по механичес­ким свойствам и изготовляется следующих марок: Ст0, Ст1 кп (сп), Ст2 кп (пс и сп), Ст3 кп (пс, гпс, гсп), Ст4 кп (пс), Ст5 пс, Ст6сп (пс).

Сталь группы Б поставляется по гарантированному химическому составу и изготовляется следующих марок: БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6.

Сталь группы В поставляется по гарантированным механическим свойствам и химическому составу и изготовляется следующих марок: ВСт1, ВСт2, ВСт3, ВСт4, ВСт5.

Знание химического состава необходимо в том случае, когда сталь у потребителя подвергается горячей штамповке, а изготовленные из неё детали – термической обработке, поскольку температура нагрева выбирается в зависимости от содержания углерода в стали.

По степени раскисления сталь всех групп с номерами 1, 2, 3, 4 изготовляется кипящей, спокойной и полуспокойной, а с номерами 5 и 6 - только спокойной и полуспокойной. Стали Ст0 и БСт0 по степени раскисления не разделяются. Сталь марок ВСт1, ВСт2, ВСт3 всех степеней раскисления поставляется с гарантией свариваемости.

Расшифровка марок:

а) буквы Б и В перед буквами Ст – группа стали; группа А не указывается, например Ст3, БСт3, ВСт3;

б) буквы Ст – сталь, цифры, от 0 до 6 – условный номер марки; с повышением номера растет содержание углерода в стали и ее прочность. Например, в сталях Ст3 и Ст5 содержание углерода соответственно: 0,14–0,22 и 0,23–0,37 %; временное сопротивление σ В: 380–490 (38–49) и 560–640 (56–64) МПа (кгс/мм 2);

в) буквы, добавляемые после номера марки, – степень раскисления: кп – кипящая, пс – полуспокойная, сп – спокойная, например Ст3кп;

г) буква Г – повышенное содержание марганца (Ст3Гпс, ВСт3Гсп);

Область применения:

– ж.–д. колеса, валы, шкивы, шестерни;

– детали грузоподъемных машин;

– слабонагруженные детали машин и приборов;

– сварные фермы, различные рамы; железобетонные конструкции.

Сталь качественная конструкционная выплавляется по ГОСТ 1050–88, поставляется по химическому составу и механическим свойствам следующих марок: 08, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60. Марка означает среднее содержание (массовую долю) углерода в сотых долях процента. Помимо указанных, поставляются стали марок 05 и 58 (55 пп – сталь пониженной прокаливаемости).

По раскисленности выплавляются стали: кипящие (кп) – 05 кп, 08 кп, 10 кп, 15 кп, 20 кп; полуспокойные (пс) – 08 пс, 10 пс, 15 пс, 20 пс (листовая сталь для холодной штамповки); спокойные (сп) – 08, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 (индекс сп в марке не ставится).

По состоянию сталь изготовляется без термической обработки, термически обработанная Т (отожженная, высокоотпущенная или нормализованная) и нагартованная Н (калиброванная, серебрянка).

По назначению различают подгруппы стали: а – для горячей обработки давлением; б – для холодной механической обработки (обточки, фрезерования, строжки и т.д.); в - для холодного волочения.

Область применения:

– для холодной штамповки и глубокой вытяжки (0,5–20);

– вагоно- и автомобилестроение;

– слабонагруженные зубчатые колеса и кулачки;

– емкости, трубы, консервные банки.

Рессоры и пружины изготовляются из сталей, выплавляемых по ГОСТ 14959–79 (сталь рессорно-пружинная углеродистая и легированная). Углеродистая рессорно-пружинная сталь поставляется в виде прутков круглого, квадратного и профильного сечения, полос и мотков следующих марок: 65, 70, 75, 80 и 85.

Сталь инструментальная углеродистая выплавляется по ГОСТ 1435–90, поставляется по химическому составу и механическим свойствам (твердости). По химическому составу сталь делится на качественную и высококачественную. Качественные стали содержат вредные примеси серы не более 0,03 и фосфора 0,035 %. В высококачественных сталях – серы не более 0,02 % и фосфора 0,03 %, меньше чем в качественных сталях неметаллических включений, а также более сужены пределы содержания, кремния и марганца. Сталь поставляется в отожженном состоянии твердостью НВ 187–217. Твердость после закалки HRC 62.

Марки сталей: качественных – У7, У8, У9, У10, У11, У12, У13; высококачественных – У7А, У8А, У9А, У10А, У11А, У12А, У13А. Выпускаются также стали с повышенным содержанием марганца марок У8Г и У8ГА, в которых содержание марганца находится в пределах 0,35–0,60 %.

В обозначении марки буква У означает углеродистую инструментальную сталь, цифры - среднее массовое содержание углерода в десятых долях процента, буква А – сталь высококачественную, буква Г – повышенное содержание марганца.

Область применения:

– зубила, молотки, отвертки, центры токарных станков (У7, У7А);

– пуансоны, матрицы, ножницы, пилы (У8, У8А);

– керны, деревообрабатывающий инструмент (У9, У9А);

– резцы, метчики, развертки, фрезы (У10, У10А);

– штампы вырубные, пилы, пресс-формы (У11, У11А);

– резцы, сверла, фрезы, метчики (У12, У13,У13А).

Сталь автоматная выплавляется по ГОСТ 1414–75 следующих марок: А11, А12, А20, А30, А35Е, А40Г. Стали содержат вредные добавки серы 0,08–0,25 и фосфора 0,06–0,15 %. Для улучшения обрабатываемости резанием в стали вводят свинец (до 0,3 %), марганец (до 1,5 %) и селен (до 0,1 %) (АС14, АС35Г и А35Е).

Область применения:

– детали крепежа (болты, гайки);

– втулки, валики, детали двигателя.

Сталь литейная выплавляется по ГОСТ 977–79 следующих марок: 15Л, 20Л, …, 55Л.

Область применения:

– отливки мелких и крупных машиностроительных деталей;

– литые коленчатые валы;

– детали подвижного состава.

2.1.2 Легированные стали, их виды и марки

Легированные стали отличаются от углеродистых сталей:

– повышенной жаростойкостью, сопротивлением коррозии;

– значительной ударной вязкостью;

– высокими значениями σ т и γ;

– большим электросопротивлением;

– обладают лучшей прокаливаемостью;

– увеличивают количество остаточного аустенита.

В диаграмме состояния Fe –легирующий элемент Ni и Mn – расширяют область существования γ-фазы; Мо, Тi – сужают область существования γ-фазы; Si, Al, W, Sn, Mo и Ti – расширяют область α-фазы. Основными легирующими элементами в стали являются Cr, Ni, Si, Mn. Никель – увеличивает пластичность и вязкость стали; уменьшает температуру порога хладноломкости ; уменьшает чувствительность стали к концентрации напряжения. Хром увеличивает жаростойкость и коррозионную стойкость стали; увеличивает электрическое сопротивление; уменьшает коэффициент линейного расширения; увеличивает прокаливаемость стали; замедляет распад мартенсита. Кремний увеличивает жаростойкость стали ; затрудняет формирование и рост цементитных частиц; используется как раскислитель при плавке стали.

W, Mo, V, Ti, B – дополнительно улучшают свойства стали. Mo и W – увеличивают прокаливаемость стали (+ Ni); способствуют измельчению зерна; подавляют отпускную хрупкость стали.

V, Ti, Ni, Zr – образуют труднорастворимые в аустените карбиды; (до 0,15 %) измельчают зерна; снижают порог хладноломкости.

В – повышает прочность и прокаливаемость стали (0,001–0,005 %).

Эффективность легированных элементов достигается при их оптимальном содержании в стали.

легированные стали классифицируют:

По типу равновесной структуры;

Структуре после нормализации;

Химическому составу;

Назначению.

Легированные стали относят: к доэвтектоидным (феррит + легированный перлит); заэвтектоидным (легированный перлит + карбиды); эвтектоидным.

Разделяют стали на 3 основных класса:

– перлитный (сорбит, тростит и бейнит);

– мартенситный (в легированных);

– аустенитный (в высоколегированных).

Легированные стали делятся:

– по химическому составу : на хромистые; марганцовистые; хромоникелевые; хромоникельмолибденовые и т.д.;

– по общему количеству легирующих элементов в них : на низколегированные (до 2,5 %); легированные (2,5–10 %); высоколегированные (свыше 10 %);

– по назначению : на конструкционные (цементуемые, улучшаемые); инструментальные; с особыми свойствами («автоматные» пружинные, шарикоподшипниковые, износостойкие, коррозионностойкие, теплоустойчивые, жаропрочные, электротехнические и др. стали).

Маркировка легированных сталей: А – азот, Б – ниобий, В – вольфрам, Г – марганец, Д – медь, Е – селен, Т – титан, К – кобальт, Н – никель, М – молибден, П – фосфор, Р – бор, С – кремний, Ф – ванадий, Х – хром, Ц – цирконий, Ч – редкоземельные, Ю – алюминий.

Машиностроительные цементируемые улучшаемые стали содержат 0,1–0,3 % углерода и 0,24,4 % легирующих элементов. После насыщения углеродом, закалки и низкого отпуска детали из таких сталей имеют высокую поверхностную твердость (до 58–63 HRC ) при вязкой центральной части. Стали 15ХФ, 15Х, 20Х (с пределом текучести до 700 МПа) используют для изготовления небольших нагруженных деталей, испытывающих средние по величине знакопеременные и ударные нагрузки. Стали 12ХНЗА, 20ХНЗА, 20ХН4А (с пределом текучести более 700 МПа) используют для изготовления деталей средних и больших размеров, работающих в условиях интенсивного изнашивания, при повышенных нагрузках. Особо ответственные детали, например зубчатые колеса авиационных и судовых двигателей, изготавливают из сталей 18Х2Н4МА, 18Х2Н4ВА. Экономно легированные стали 18ХГТ, ЗОХГ, 25ХГТ имеют наследственную мелкозернистую структуру, что позволяет сократить технологический цикл обработки детали. Такие стали применяют для изготовления ответственных деталей крупносерийного и массового производства.

Машиностроительные улучшаемые легированные стали содержат 0,3–0,5 % углерода и до 5 % легирующих элементов. Используются преимущественно после улучшения (закалки и высокого отпуска при температуре 500600 °С на сорбит). Основное применение – ответственные детали машин, эксплуатируемые при воздействии циклических или ударных нагрузок. Для изготовления средненагруженных небольших деталей машин и механизмов без значительных динамических нагрузок применяют хромистые стали 30Х, 38Х, 40Х, 50Х. С увеличением содержа­ния углерода возрастает прочность этих сталей, но несколько снижается их вязкость и пластичность. Из хромоникелевых сталей 40ХН, 50ХН, а также из хромокремнемарганцевых сталей 30ХГСА, 35ХГСА, которые обладают высокими прочностными и вязкостными свойствами, изготавливают ответственные детали, работающие при воздействии динамических нагрузок.

Хромоникельмолибденовые стали 40ХНМА, 38ХМЗМА обладают повышенными механическими свойствами при температуре до 450 °С.

Мартенситостареющие высокопрочные стали (с пределом прочности 1800–2000 МПа) – безуглеродные (не более 0,03 % С) сплавы железа с никелем, легированные кобальтом, молибденом, титаном и другими элементами. Высокие механические свойства сталей HI8K9M5T, H12KI5M10 достигаются за счет совмещения мартенситного g ® a-превращения, старения мартенсита и легирования твердого раствора. Эти стали сохраняют высокие механические характеристики при низких температурах вплоть до температур сжиженных газов. Такие стали теплоустойчивы до температур 500700 °С. Находят применение для ответственных деталей в авиации, судостроении.

Износостойкие конструкционные стали обладают высоким сопротивлением контактной усталости и истиранию за счет высокой твердости, однородности структуры, минимального содержания неметаллических включений и металлургических дефектов. Термическая обработка (закалка и низкий отпуск) стали ШХ15ГС обеспечивает их твердость HRC 60–66. Для деталей, работающих в агрессивных средах (морской воде, слабых растворах кислот, щелочах), применяют коррозионностойкую высокоуглеродную сталь 95X18. Детали, эксплуатируемые при воздействии ударных нагрузок, вызывающих их поверхностный наклеп, а следовательно, снижение износостойкости обычных сталей, изготавливают из аустенитной высокомарганцовистой стали Г13Л. Для изготовления деталей, эксплуатируемых в условиях трения скольжения, применяют графитизированную сталь, имеющую структуру ферритно-цементитной смеси и графита. Последний играет роль смазочного материала, предотвращающего схватывание контактирующих деталей.

Коррозионно-стойкие стали и сплавы устойчивы к коррозии на воздухе, в воде (в т.ч. морской), в ряде кислот, солей и щелочей. Из хромистых сталей Х25Т, Х28, имеющих ферритную структуру, изготавливают детали, эксплуатируемые в высокоагрессивных средах, например в кипящей азотной кислоте. Хромоникелевые стали 04Х18Н10, 08Х18Н10, 12Х12Н10Т, имеющие аустенитную структуру, используют в авиа- и судостроении.

Жаропрочные стали и сплавы обеспечивают эксплуатацию деталей при температуре свыше 500 °С. Для деталей, эксплуатируемых в среде с температурой 500580 °С, используют низкоуглеродистые стали, имеющие структуру пластинчатого перлита, легированные кобальтом, молибденом, ванадием, в частности 16М, 25ХМ, 12Х1МФ. Нагруженные детали, эксплуатируемые в среде с температурой до 450-470 °С, изготавливают из высокохромистых сталей 15X11НМФ, 1ХКВНМФ, имеющих в зависимости от температуры отпуска структуру сорбита или троостита.

Низкоуглеродистая сталь встречается повсеместно. Ее популярность основана на физических, химических свойствах и невысокой стоимости. Этот сплав широко применяется в промышленности и в строительстве. Рассмотрим подробнее этот

Состав

Сталь - железо, обогащенное углеродом в процессе плавки. Для углеродистых выплавок характерно наличие углерода, который определяет основные свойства металла, и примесей: фосфора (до 0,07%), кремния (до 0,35%), серы (до 0,06%), марганца (до 0,8%). Так, низкоуглеродистая сталь содержит не более 0,25% углерода.

Что касается других добавок, марганец и кремний служат раскислению (удалению кислорода из что уменьшает хрупкость при горячей деформации). А вот повышенный процент серы может привести к растрескиванию сплава при термической обработке, фосфора - при холодной.

Способы получения

Производство низкоуглеродистого сплава можно разложить на несколько этапов: загрузку в печь чугуна и лома (шихты), термическое воздействие до состояния плавления, удаление из массы примесей.

Для исполнения таких процессов пользуются тремя способами:

  • Мартеновские печи. Самое распространенное оборудование. Процесс плавки происходит в течение нескольких часов, что позволяет отслеживать лабораториям качество получаемого состава.
  • Конвекторные печи. Производится за счет продувки кислородом. Следует отметить, что сплавы, полученные таким способом, не отличаются высоким качеством, так как содержат большее количество примесей.
  • Индукционные и электропечи. Процесс производства идет с применением шлака. Таким способом получаются высококачественные и специализированные сплавы.

Рассмотрим особенности классификации сплавов.

Виды

Низкоуглеродистая сталь может быть трех видов:

  • Обычного качества. В таких сплавах содержание серы не превышает 0,06%, фосфора 0,07%.
  • Качественная . В составе наличие: серы до 0,04%, фосфора до 0,035%.
  • Высококачественная. Содержание серы до 0,025%, фосфора до 0,025%
  • Особого качества. Низкое содержание примесей: серы до 0,015%, фосфора - до 0,025%.

Как уже говорилось ранее, чем меньше примесей, тем лучше качество сплава.

Сталь низкоуглеродистая ГОСТ 380-94 обыкновенного качества делится еще на три группы:

  • А. Определяется своими механическими свойствами. Форма поставки потребителю чаще всего встречается в виде многопрофильного и листового проката.
  • Б. Основные показатели - химический состав и свойства. Оптимальные для механического воздействия давлением под термическим фактором (ковка, штамповка).
  • В. Для таких видов сплавов важны такие свойства: технические, технологические, физические, химические и, соответственно, состав.

По процессу раскисления стали делят на:

  • Спокойные. Процесс затвердевания происходит спокойно. Газы при таком процессе не выделяются. Усадка происходит в середине слитка.
  • Полуспокойные. Промежуточный вид стали между спокойными и кипящими составами.
  • Кипящие. Затвердевание происходит с выделением газа. Усадочная раковина скрытого типа.

Основные свойства

Низкоуглеродистая сталь отличается высокой пластичностью, легко деформируется в холодном состоянии и в горячем. Отличительной чертой такого сплава является хорошая свариваемость. В зависимости от добавочных элементов свойства стали могут меняться.

Чаще всего низкоуглеродистые сплавы применяются в строительстве и промышленности. Это обусловлено невысокой ценой и хорошими прочностными качествами. Такой сплав еще называют конструкционным. Свойства низкоуглеродистой стали зашифрованы в маркировке. Ниже мы рассмотрим ее особенности.

Особенности маркировки

Обычная низкоуглеродистая сталь имеет буквенное обозначение СТ и цифровое. Число следует делить на 100, тогда будет понятно процентное содержание углерода. Например, СТ15 (углерод 0,15%).

Рассмотрим маркировку и расшифруем обозначения:

  • Первые буквы или их отсутствие говорит о принадлежности к той или иной группе качества. Это могут быть Б или В. Если нет буквы, значит сплав принадлежит к категории А.
  • Ст обозначает слово «сталь».
  • Цифровое обозначение - зашифрованное процентное содержание углерода.
  • кп, пс - обозначает кипящий или полуспокойный сплав. Отсутствие обозначения говорит о том, что сталь спокойная (сп).
  • Буквенное обозначение и цифровое после него раскрывают, какие примеси входят в состав, и их процентное содержание. Например, Г - марганец, Ю - алюминий, Ф - ванадий.

Для качественных низкоуглеродистых сталей в маркировке не ставится буквенное обозначение «Ст».

Также применяется цветовое обозначение. Например, низкоуглеродистая сталь марки 10 имеет белый цвет. Стали специального назначения могут обозначаться дополнительными буквами. Например, «К» - применяется в котлостроении; ОсВ - используется для изготовления вагонных осей и т. д.

Выпускаемые изделия

Можно выделить несколько групп стальной продукции:

  • Листовая сталь. Подвиды: толстолистовая (ГОСТ 19903-74), тонколистовая (ГОСТ 19904-74), широкополостная (ГОСТ 8200-70), полосовая (ГОСТ 103-76), рифленая (ГОСТ 8568-78)
  • Уголковые профили. Равнополочные (ГОСТ 8509-93), неравнополочные (ГОСТ 8510-86).
  • Швеллеры (ГОСТ 8240-93).
  • Двутавры. обыкновенные (ГОСТ 8239-89), Балки двутавровые широкополочные (ГОСТ 26020—83, СТО АСЧМ 20—93).
  • Трубы.
  • Профилированный настил.

К этому перечню добавляют вторичные профили, которые образуются за счет сварных работ и механической обработки.

Сферы применения

Область использования низкоуглеродистой стали достаточна широка и зависит от маркировки:

  • Ст 0, 1, 3Гсп. Широкое применение в строительстве. Например, проволока арматурная из низкоуглеродистой стали,
  • 05кп, 08, 08кп, 08ю. Хороша для штамповки и холодной вытяжки (высокая пластичность). Применяются в автомобилестроении: кузовные детали, топливные баки, змеевики, части сварных конструкций.
  • 10, 15. Применяются для деталей, не подвергающихся высоким нагрузкам. Трубы для котлов, штамповки, муфты, болты, винты.
  • 18кп. Характерное применение - конструкции, которые производят с помощью сварочных работ.
  • 20, 25. Широко используется для производства крепежных материалов. толкатели клапанов, рамы и другие детали сельскохозяйственных машин.
  • 30, 35. Оси, на которые идет малая нагрузка, звездочки, шестерни и т. д.
  • 40, 45, 50. Детали, испытывающие средние нагрузки. Например, коленчатые валы, фрикционные диски.
  • 60-85. Детали, подвергающиеся высокой нагрузке. Это могут быть рельсы для железной дороги, колеса для кранов, рессоры, шайбы.

Как видно, производимый ассортимент обширен - это не только проволока низкоуглеродистой стали. Также это детали сложных механизмов.

Низколегированная и низкоуглеродистая сталь: отличия

Для улучшения каких-либо характеристик сплава добавляются легирующие элементы.

Стали, которые содержат в чебе низкое количество углерода (до четверти процента) и легирующих добавок (общий процент - до 4 %) называются низколегированными. Такой прокат сохраняет высокие сварные качества, но при этом усиливаются разные свойства. Например, прочность, антикоррозийные характеристики и так далее. Как правило, оба вида применяются в сварных конструкциях, которые должны выдерживать температурный диапазон от минус 40 до плюс 450 градусов Цельсия.

Особенности сварки

Сварка низкоуглеродистых сталей имеет высокие показатели. Тип сварки, электроды и их толщину подбирают на основе следующих технических данных:

  • Соединение непременно должно быть прочно скреплено.
  • Не должно быть дефектов швов.
  • Химический состав шва должен выполняться в соответствии нормативам, указанных в ГОСТе.
  • Сварные соединения должны соответствовать условиям эксплуатации (устойчивость к вибрациям, механическому воздействию, температурному режиму).

Могут использоваться различные от газовой до сварки в среде углекислого газа плавящимся электродом. При подборе учитывают высокую плавкость низкоуглеродистых и низколегированных сплавов.

Что касается конкретно сферы применения, то низкоуглеродистый прокат используется в строительстве и машиностроении.

Подбирается на основе требуемых на выходе физических и химических свойств. Наличие может улучшить одни свойства (стойкость к коррозии, температурным перепадам), но и ухудшить другие. Хорошая свариваемость - еще одно достоинство таких сплавов.

Итак, мы выяснили, что собой представляют изделия из низкоуглеродистой и низколегированной стали.