Найти работу оператор котельный газовый. Архангельск взял курс на биотопливо, а Алтай — на солнце и ветер

Автоматизированные котельные на биотопливе

Котельная на биотопливе предназначена для получения тепловой энергии путем сжигания биотоплива и передачи ее потребителю посредством нагретого теплоносителя с целью отопления жилых и производственных зданий, а также технологических помещений с температурой теплоносителя 95–115 о С. Комплекс котельной представляет логическую систему взаимосвязей обеспечения и доставки биотоплива к зданию самой котельной, хранения и подачи биотоплива, его сжигания и получения тепловой энергии.

Котельная на биотопливе, принципиальный состав оборудования:

система приемки, складирования и подачи биотоплива (топливный приемник, загрузчик, топливный склад);
система сжигания биотоплива с производством тепловой энергии (водогрейный биотопливный котел, или несколько котлов);
система аспирации дымовых газов (золоуловители циклонного или кассетного типа с дымососом, дымоходы, боровные части, дымовые трубы);
система золоудаления (устанавливается как опция на котлы на биотопливе с высоким процентом зольности);
система контроля и управления (система автоматического регулирования дозирования подачи топлива и управления процессами оптимального горения и теплообмена в котле).

В обеспечение технологичности изготовления, сокращения объема монтажных работ, повышения уровня ремонтопригодности и удобства обслуживания, оборудование котельной сгруппировано в модули:

Котельная на биотопливе, основные модули:


1 - приемно-выгрузочный модуль для приемки биотоплива из самосвального автотранспорта и выгрузки на перегрузочный транспортер;

2 - накопительно-выгрузочный модуль для накопления необходимого объема топлива, обеспечивающего бесперебойную работу котельной с номинальной мощностью в течение 4-5 суток, и дозированной выгрузки биотоплива на транспортеры, подающие топливо в топку котлов;

3 - водогрейные котлы работающие на биотопливе, и обеспечивающие производство тепловой энергии в форме нагретой до 95-105 о С воды;

4 - система контроля и автоматизированного управления, обеспечивающая текущий контроль и регулирование параметров котельной: разрежение в топочном объеме котла; надлежащее качество сжигания топлива; теплопроизводительность котлов.

Котельная на биотопливе. Функциональная схема.

Доставка биотоплива к котельной осуществляется автотранспортом с использованием самосвальных прицепов, обеспечивающих как боковую так и заднюю выгрузку топлива в механизированный приемник. Механизированный приемник имеет защитную откидывающуюся крышку. Открытие крышки перед загрузкой топлива осуществляется механическим приводом. Загруженное в приемник топливо перемещается при помощи подвижных стокеров на наклонный скребковый транспортер, который поднимает топливо к оперативному бункеру-дозатору далее шнековым транспортером в котлы на биотопливе. Управление работой транспортеров и приемника производится с пульта управления в автоматическом режиме. Управление производительностью выгрузки подаваемого в котел биотоплива осуществляется изменением периода возвратно-поступательного движения стокерных толкателей задаваемого автоматической системой управления котла. Поддержание требуемой теплопроизводительности котла обеспечивается в автоматическом режиме системой управления по заданной температуре в прямой линии первого контура изменением производительности выгрузки топливного склада. В системе управления котельной предусмотрена защита от перегрузок оборудования и блокировка аварийных режимов работы при повышении предельных значений температуры в топке, температуры воды в прямой линии, при падении давления воды в системе ниже предельно допустимого значения.

Основное оборудование котельной (механизированный топливный склад, средства подачи топлива - скребковые и шнековые транспортеры, водогрейные котлы на биотопливе) располагается в быстровозводимом неутепленном здании ангарного типа. Дополнительное оборудование котельной (насосно-распределительные станции, средства контроля и автоматического управления, система водоподготовки, мембранные и расширительные баки, запорно-регулирующая арматура и прочие теплотехнические узлы и агрегаты) размещаются в отдельных отапливаемых помещениях операторской и машинном отделении.

В качестве биотоплива используются возобновляемые энергетические ресурсы, такие как торф (кусковой и фрезерный), отходы лесопиления (кора, щепа, опилки). Фракция топлива ограничена размерами 50х50х5 мм. Подготовка топлива по фракционности производится при помощи роторных дробилок или молотковых дробилок.

Котел на биотопливе способен использовать древесные отходы с высокой относительной влажностью без предварительной просушки. Влажность топлива может достигать 55%.

Трубная обвязка котельной.

Рекомендации для проектирования зданий котельных и топливных складов

Котельные на биотопливе по назначению подразделяются на:

Отопительные - для обеспечения теплом систем отопления, вентиляции и горячего водоснабжения;
отопительно-производственные - для обеспечения теплом систем отопления, вентиляции, горячего водоснабжения и для технологического теплоснабжения;
производственные - для технологического теплоснабжения.

Котельные на биотопливе по размещению подразделяются на:

Отдельно стоящие;
пристроенные к зданиям другого назначения;
встроенные в здания другого назначения;
крышные (только для газовых и жидкотопливных котельных).

Для производственных зданий промышленных предприятий допускается проектирование пристроенных, встроенных котельных. Для котельных, пристроенных к зданиям указанного назначения, общая производительность устанавливаемых котлов, единичная производительность каждого котла и параметры теплоносителя не нормируются. При этом котельные должны располагаться у стен, где расстояние от стены котельной до ближайшего проема по горизонтали должно быть не менее 2 м. Расстояние от перекрытия котельной до нулевой точки по вертикали не менее 8 м. Не допускается проектирование пристроенных котельных непосредственно примыкающих к жилым зданиям со стороны входных подъездов и участков стен с оконными проемами, где расстояние от внешней стены котельной до ближайшего окна жилого помещения по горизонтали менее 4 метров, а расстояние от перекрытия котельной до ближайшего окна по вертикали менее 8 метров. Общая тепловая мощность индивидуальной котельной не должна кратно превышать потребности в теплоте здания или сооружения, для теплоснабжения которого она предназначена.

Технологическая схема и компоновка оборудования котельной на биотопливе должны обеспечивать:
оптимальную механизацию и автоматизацию технологических процессов, безопасное и удобное обслуживание оборудования;
установку оборудования по очередям; наименьшую протяженность коммуникаций; оптимальные условия для механизации ремонтных работ;
возможность въезда в котельную напольного транспорта (автопогрузчиков, электрокаров) для транспортирования узлов оборудования и трубопроводов при производстве как ремонтных, так и монтажных работ.

Земельные участки для строительства котельных на биотопливе выбираются в соответствии со схемой теплоснабжения, проектами планировки и застройки городов, поселков и сельских населенных пунктов, генеральными планами предприятий, схемами генеральных планов групп предприятий с общими объектами (промышленных узлов).
Размеры земельных участков котельных на биотопливе, располагаемых в районах жилой застройки, следует принимать в соответствии со строительными нормами и правилами по планировке и застройке городов, поселков и сельских населенных пунктов. При проектировании генерального плана котельной следует предусматривать возможность размещения укрупнительно-сборочных площадок, складских, а также временных сооружений, необходимых на период производства строительно-монтажных работ.
Ограждение котельных следует проектировать в соответствии с Указаниями по проектированию ограждений площадок и участков предприятий, зданий и сооружений.
При проектировании зданий и сооружений котельных следует руководствоваться строительными нормами и правилами по проектированию производственных зданий, административных и бытовых зданий, сооружений промышленных предприятий.
Размеры пролетов зданий и сооружений котельных следует принимать кратными 6 м. Шаг колонн следует принимать 6 м. При специальном обосновании шаг колонн допускается принимать 12 м. Здания котельных необходимо проектировать с пролетами одного направления. Компоновочные решения с пролетами разных направлений допускаются в условиях стесненной площадки строительства при проектировании реконструкции котельных. Объемно-планировочные и конструктивные решения зданий и сооружений котельных могут допускать возможность их расширения. Для обеспечения возможности крупноблочного монтажа оборудования в стенах и перекрытиях зданий котельных должны предусматриваться монтажные проемы, согласно рекомендациям монтажных организаций. Такие проемы, как правило, следует предусматривать в торцевой стене со стороны расширения котельной.

Встроенные котельные на биотопливе должны отделяться от смежных помещений противопожарными стенами 2 типа или противопожарными перегородками 1 типа и противопожарными перекрытиями 3 типа. Пристроенные котельные должны отделяться от основного здания противопожарной стеной 2 типа. При этом стена здания, к которой пристраивается котельная, должна иметь предел огнестойкости не менее 0,75 ч, а перекрытие котельной должно выполняться из негорючих материалов. Выходы из встроенных и пристроенных котельных надлежит предусматривать непосредственно наружу. Оконные переплеты выше указанного уровня следует проектировать с одинарным остеклением. Площадь и размещение оконных проемов в наружных стенах следует определять из условия естественной освещенности, а также с учетом требований аэрации по обеспечению необходимой площади открывающихся проемов. Площадь оконных проемов должна быть минимальной. Коэффициент естественной освещенности при боковом освещении в зданиях и сооружениях котельных надлежит принимать равным 0,5, кроме машинного зала, помещений со щитами автоматики и ремонтных мастерских, для которых этот коэффициент принимается равным 1,5.

Котлы на биотопливе серии КТУ мощностью от 300 до 1000 кВт могут устанавливаться без специального фундамента или на армированные монолитные бетонные плиты толщиной не менее 200 мм. Котел на биотопливе серии КТУ мощностью от 1500 до 2500 кВт устанавливаются на специальный фундамент, проект которого высылается фирмой производителем.

Также ПО "ТЕПЛОРЕСУРС" производит

Ещё три года назад использование отходов лесозаготовки и деревообработки в качестве сырья для производства электро- и тепловой энергии не интересовало ни энергетические компании, ни предприятия ЛПК, ни какой другой бизнес в Коми, но сейчас за валяющийся годами горбыль требуют такие деньги, что сжи гать его становится просто невыгодно. Биоэнергетика в Коми появилась, но и тут республика идёт по особому пути.

На заседании комиссии при экономическом совете Коми 29 мая первый заместитель министра развития промышленности и транспорта Коми Александр Гибеж напомнил, почему в республике несколько лет назад обратили особое внимание на ускоренное развитие биоэнергетики. Ежегодно в лесном комплексе образуется огромное количество древесных отходов, которые не находят применения. По оценкам, ежегодно образуется 1,5 млн. тонн коры, щепы и опилок. Как правило, всё это складируется и никак не используется – районы республики просто завалены отходами. Также может использоваться древесина, которая вырубается при расчистках дорог и ЛЭП, а также низкосортная древесина – всё это чаще всего оставляется гнить, закапывается или сжигается.

В Коми в прошлом году была принята программа развития биоэнергетики, которая ставит достаточно глобальные цели: улучшение экологической ситуации в регионе, повышение качества и надёжности предоставления коммунальных услуг, снижение затрат, создание новых рабочих мест, повышение экономической эффективности лесоперерабатывающих и лесозаготовительных производств, интенсификация лесного хозяйства.

На первом этапе (2013-2016 годы) предполагается перейти на полное использование отходов лесопереработки, перевести часть котельных с угля на топливные брикеты, реконструировать некоторые котельные с переводом их на биотопливо, начать монтаж теплогенерирующего оборудования в муниципальных учреждениях, внедрить использование биотоплива в частном секторе. В 2016-2020 годах возьмут в оборот и отходы лесохозяйственной деятельности, начнут системно переделывать котельные и массово снабжать частный сектор биотопливом.

В прошлом году в республике начали обустраивать площадки для складирования и хранения древесных отходов. В настоящее время полностью готова только одна – в селе Аджером Корткеросского района, ещё три (в Усть-Куломе, Мордино, Жешарте) сделают в этом году. Всего будет 11 в десяти муниципалитетах. Возникла проблема – сначала думали, что организация места обойдётся примерно в 7 млн. рублей, а на деле вышло, что только на четыре площадки потратят 120 млн. Тем не менее эти площадки уже привлекают инвесторов – в Усть-Куломе рядом с ней разместилось производство биотоплива.

Разрабатываются и технико-экономические обоснования модернизации систем теплоснабжения населённых пунктов с их переводом на биотопливо. В 2013-м были разработаны ТЭО по Усть-Кулому, Койгородку, Сторожевску, Объячево, Ясногу, Нившере. Эксперты подсчитали, что для полной модернизации нужно 750 млн. рублей инвестиций. При этом объём необходимого биотоплива оценивается в 110 тыс. кубометров в год, а общая мощность тепловой энергии оценивается в 62 МВт. В этом году будут разработаны ТЭО ещё по шести населённым пунктам.

Что касается крупных проектов, то в большинстве случаев они нацелены на производство тепловой, а не электроэнергии. Сейчас заканчиваются пусконаладочные работы на мини-ТЭЦ компании «СевЛесПил», в конце этого года – начале следующего запустит мини-ТЭЦ «Биоэнергетическая компания», в ближайшее время «Азимут» начнёт строительство мини-ТЭЦ в Троицко-Печорском районе.

«Реализация системной политики по развитию биоэнергетики позволяет рассчитывать, что в ближайшее время она действительно принесёт свои положительные результаты. Главное, чего удалось достичь за последние годы, - изменилось отношениё к этой сфере у чиновников различного уровня, у бизнеса, и начинает потихоньку меняться отношение населения», - сделал вывод А. Гибеж.

В заключение первый замминистра всё же сказал, что сейчас стоит задача реализации крупных проектов по теплогенерации на биотопливе в коммунальной сфере, где «нам пока не удаётся сдвинуться вперёд».

Как рассказал первый заместитель министра архитектуры, строительства и коммунального хозяйства Коми Александр Можегов, котельные используют четыре вида древесного топлива – дрова, щепу, топливные брикеты и топ-ливные гранулы (пеллеты). Дровами топят небольшие коммунальные ведомственные котельные (30 принадлежащих «Коми тепловой компании» котельных, доля производимой теплоэнергии – 3,5%). На щепе работают две коммунальные котельные в посёлках Междуреченск Удорского района и Подзь Койгородского района. Коммунальные ведомственные котельные также используют брикеты, пеллеты – ведомственные котельные, которые появились осенью прошлого года в Корткеросском районе.

Отдельно замминистра остановился на плюсах и минусах их использования. По капиталоёмкости (объём инвестиций, который необходимо потратить для того, чтобы предприятие работало на том или ином виде топлива) выигрывают дрова – чтобы ими топить, не надо проводить никакой модернизации. А вот переход на щепу или пеллеты требует серьёзных финансовых затрат. По качеству дрова и щепа не выдерживают конкуренции (из-за влажности, плохого сырья). При простоте подсчёта преимущество также у брикетов и пеллет, а вот с дровами и щепой непонятно, как поступать – считать в объёме или массе. Автоматизации проще
достичь, используя брикеты, пеллеты, отчасти – щепу. Конкуренция может быть при поставках дров, брикетов и пеллет, по щепе конкуренции нет. По теплотворности хорошие показатели у брикетов и пеллет. Эффективный радиус доставки щепы и дров – до 40 километров, продуктов глубокой переработки – до 450 километров от котельной.

Во всём мире использование щепы для производства тепловой энергии является эффективным и выгодным. Однако в Коми ситуация противоположная. Например, прошлый год котельная в Междуреченске сработала с результатом минус 21 млн. рублей, в Подзе – минус 4 млн. рублей. При этом затраты на щепу превышают выручку от реализации теплоэнергии в самом Междуреченске. «По щепе практика складывается плохо. К сожалению, ситуация не меняется. Так, в Подзе из-за дороговизны щепы котельная постепенно переходит на использование дров. Также котельная в посёлке Якша Троицко-Печорского района, которая изначально проектировалась и строилась под щепу, в настоящее время работает на дровах», - сказал А. Можегов. Одна из причин – плохое сырьё, отсутствие не просто конкуренции среди поставщиков, а отсутствие самих поставщиков: в Коми щепы нет, она производится самими котельными из отходов лесного производства.

При этом лесные районы захламлены отходами лесопиления. Они копились годами и сейчас могли бы стать сырьём для производства брикетов и пеллет или перемалываться в щепу. Когда лесные предприятия поняли, что горы древесных отходов можно превратить в деньги, они стали требовать за них непомерные суммы – выходило даже так, что «Коми тепловой компании» выгоднее покупать привозной уголь, чем закупать горбыль у расположенного неподалеку предприятия. На совещании предложили сбить цену таким способом: как правило, все эти свалки являются несанкционированными, поэтому если «натравить» Госпожнадзор и природоохранную прокуратуру, деревообрабатывающие предприятия с радостью расстанутся с накопленными отходами лесопиления.

В своём выступлении А. Можегов сказал, что котельные всё равно постепенно будут переводить на биотопливо. Это не только эффективно с точки зрения экономики, но и меняет культуру производства. «В котельной становится чисто. Например, котельная в селе Кожмудор Усть-Вымского района всю зиму работала на брикетах, сейчас там нет ни грязи, ни пыли. И работники не торопятся переходить на уголь, когда после смены они были чёрными, как шахтеры. А теперь оператор котельной ходит в чистой фланелевой рубашке», - рассказал заместитель министра.

*** Котельные в лесных районах Коми потребляют примерно 100 тыс. тонн угля в год, это меньше 1% от общего объёма добычи угля в республике, поэтому перевод котельных на биотопливо никак не скажется на угольной отрасли республики.

Игорь Соколов.

komionline.ru


Дата публикации: 16 июня 2014
Опубликовано в "Лесной Регион" №

В настоящее время более остро встает проблема поиска отличных от традиционных источников энергии. Запасы традиционных энергоносителей конечны и недешевы, поэтому предпочтение все чаще отдается возобновляемым источникам энергии. Человечество уже использует потенциал воды, ветра, Солнца, но также одним из возобновляемых источников топлива являются продукты жизнедеятельности самого человечества.

Специалисты Турбопар уже более 6-ти лет успешно занимаются проблемами утилизации отходов птицеводства, животноводства и в целом сельского хозяйства.

1. Виды биотоплива.

Под биотопливом понимается топливо, получаемое путем переработки побочных продуктов животного или растительного происхождения (биомассы). Это и древесина (щепа), и солома, и жмыхи, и лузга масличных культур, и продукты жизнедеятельности домашних животных и самого человека. И этот источник энергоресурсов будет существовать, пока будет существовать человек и наша планета.
Различные виды биотоплива имеют разный энергетический потенциал и, соответственно, требуют различного подхода к извлечению этого потенциала.

2. Методы использования биотоплива (подготовка к использованию в котельной для последующей подачи в котлы).

Существуют различные технологии по использованию биотоплива и приготовлению из него конечного продукта для подачи в топку котла. И подбор конкретной технологии к определенному виду биотоплива зависит от условий Заказчика. Ранее мы рассмотрели вопросы использование щепы , в данном разделе осветим вопросы утилизации других видов биотоплива, а также биоотходов.

В зависимости от влажности исходного топлива, его свойств и происхождения выделяют такие технологии как прямое сжигание, газификацию, либо получение биогаза. Так при влажности исходного топлива более 50%, как правило, целесообразнее использовать технологию получения биогаза, при влажности меньше 50% методы прямого сжигания топлива либо газификацию топлива.
Остановимся на общем описании каждого из указанных методов.

Метод с получением биогаза. Сущность данного метода заключается в следующем: биотопливо (биомасса) загружается в биореакторы, где происходит процесс брожения, в ходе которого метановые бактерии вырабатывают собственно первичный биогаз. Требования к данной технологии очень высоки, любое нарушение технологии либо температурных ре
жимов может привести к гибели бактерий, и соответственно к остановке биореактора, для его очистки.

Минусами данного метода являются как дополнительные затраты на увеличение влажности исходного биотоплива (в зависимости от времени года до 92-94%) и подогрев добавляемой воды (если технология применяется в регионах с холодными периодами года), так и довольно долгий срок приготовления непосредственно топлива – биогаза. Также надо учитывать, что при данной технологии общая масса исходного сырья уменьшается на 3-5%, т.е. как способ, в том числе и утилизации отходов, такая технология малоприменима (хотя продукт после брожения в некоторых случаях можно использовать как удобрение). Однако в то же время стоит отметить и такие несомненные плюсы данной технологии, как:
- высокая калорийность получаемого топлива (по характеристикам биогаз наиболее приближен к природному газу),
- использование полученного биогаза для различных нужд, в том числе для получения биотоплива для автомобилей,
- существенная экономия на процессе получения энергии, если влажность исходного топлива высока (от 65%).

Особняком в этой технологии стоит утилизация куриного помета кур-несушек, влажность которого может достигать 90 % и более. Это связанно в первую очередь с высоким содержанием азота в данном виде топлива, что приводит при применении данной технологии к образованию большого количества азотистой воды, которая требует дорогостоящих решений по утилизации.


Метод газификации.
Метод основан на получение генераторного газа. Данная технология применяется при влажности топлива до 50% (даже если производители подобного оборудования и декларируют влажность выше, надо учесть, что они не обманывают, они просто говорят о влажности исходного топлива. В газификатор поступает брикет с максимальной влажностью 50%).
Данная технология требует брикетирования, в отличие от технологии, основанной на биогазе (при биогазовой технологии можно ограничиться участком приема топлива и смешения, после чего полученная первичная масса загружается в биореактор). Таким образом, в процессе появляются дополнительные электрические затраты на этот узел. Следует отметить также и требования по зольности исходного топлива, которая не должна превышать 40 % (максимально достижимое значение в ходе экспериментов на сегодняшний день 45% зольности). Связано это требование с тем, что эти технологии основаны на горении с ограниченной подачей воздуха. Топливо с высокой зольностью не будет иметь стабильного горения. Кроме того, потребуются значительные затраты для поддержания этого процесса. Также отметим, что получаемый газ имеет более низкие качественные характеристики в сравнении с биогазом (так калорийность и теплота сгорания генераторного газа может быть в 3-5 раз ниже биогаза). К тому же, если получившийся газ планируется подавать в ГПА, то требуется дополнительная система очистки газа от продуктов горения, а также камера охлаждения. Также следует учесть, что в настоящее время в основном эта технология развита на экспериментальном уровне, по крайней мере, на территории стран СНГ, и существуют сильные ограничения по возможному количеству перерабатываемой биомассы.

Данные технологии имеют и свои уникальные по сравнению с другими методами преимущества. Одно из основных достоинств данной технологии – она применима практически к любому виду топлива. При помощи данной технологии генераторный либо пиролизный газ можно получить не только из биомассы, но и из ТБО (твердо-бытовых отходов), продуктов нефтепереработки (пластмассы, полиэтилен и пр.). Данная технология наиболее стабильна и контролируема. Конечный продукт (генераторный газ) стабилен по составу. По капиталовложениям данный вариант сопоставим с методом прямого сжигания. Происходит значительная утилизация отходов, что тоже дает несомненный плюс данной технологии, также как и то, что продуктами горения при данной технологии являются (при утилизации именно биомассы) высококачественные удобрения. Заметим, что затрачиваемое время на получение конечного продукта в виде генераторного газа значительно ниже, чем при биогазовом методе (при биогазе время получения биогаза в зависимости от типа применяемого первоначального биотоплива может доходить до 12-14 дней), и зависит от мощности брикетера, времени на сушку и времени на газификацию. Напоследок отметим, что при данном методе также отсутствуют вредные выбросы в атмосферу.
Полученный генераторный газ подают в стандартные газовые котлы (паровые либо водогрейные), но с переработанными под генераторный газ горелками.

Метод прямого сжигания. Как понятно из названия, суть метода – прямое сжигание биотоплива. При данном методе ключевое значение имеет даже не котельное оборудование, а метод топливоподготовки, хотя существует связь между топливоподготовкой и планируемым способом сжигания (цепная решетка, вихрь, кипящий слой и т.д.).
Данная технология требует низкой влажности топлива (45% и ниже), также как и предыдущий метод чувствительна к зольности первичной биомассы. К тому же в зависимости от типа топлива может меняться и сам состав оборудования, причем радикально, как пример, от брикетеров до дробилок. Также не стоит забывать, что в классическом исполнении этой технологии при сжигании есть проблема выбросов дымовых газов, температурой порой до 250 0С, что естественно не способствует экологической обстановке вокруг комплекса мини-ТЭЦ. При этом система требует довольно дорогих систем фильтрации, чтобы уменьшить выбросы в атмосферу вредных веществ.
Данная технология является наиболее отработанной, хотя в современном мире с помощью этой технологии пытаются утилизировать все больше видов биотоплива. Технология востребована при переводе котельной в мини-ТЭЦ на местные виды топлива, что позволяет существенно уменьшить первоначальные капитальные вложения (надо понимать, что речь идет о твердотопливных котлах).
Может возникнуть вопрос, а какой же метод применим при влажности исходной биомассы 50-65%? И однозначный ответ не будет дан, так как это то пограничное значение, при котором все покажет экономический расчет и сравнение технологий.

Специалисты ТУРБОПАР выполняют:

1. Анализ существующего топлива.

2. Выбор наиболее эффективного сжигания топлива.

3. Эффект утилизации.
Что же дает использование биотоплива?
Конечно, самый главный эффект использования данного топлива заключен в существенной экономии денежных средств.
Но также немаловажным является тот момент, что в отличие от классических видов энергоресурсов (таких как уголь, газ, мазут), биотопливо возобновляемо. Данный вид топлива не исчерпаем. Рано или поздно человечество будет вынуждено получать энергию именно при помощи возобновляемых источников топлива.

Необходимо отметить, что биотопливом зачастую являются отходы, утилизация которых стоит достаточно дорого, да и что скрывать, данные отходы наносят вред окружающей среде. Таким образом, при использовании биотоплива, помимо экономии на электрической и тепловой энергии за счет собственной выработки, происходит существенная экономия на утилизации отходов, в том числе сельскохозяйственных, происходит экономия на площадях, ранее отводимых под хранение отходов перед их отправкой на утилизацию, поддержание экологии (экономия хотя бы на экологических штрафах).

Итак, подведём итог и выделим плюсы использования биотоплива:
1. Биотопливо возобновляемо.
2. Себестоимость биотоплива существенно ниже, нежели стоимость классического топлива.
3. Исходя из пункта 2 существенно ниже и стоимость получаемой тепловой и электрической энергий.
4. В качестве источников топлива можно рассматривать различные отходы, такие как солома, лузга масличных культур, отходы переработки сахара (жом, ботва), навоз/помет и многие другие отходы животного и растительного происхождения.
5. Конечным продуктом котельных и мини-ТЭЦ на биотопливе является не только тепловая и электрическая энергии. Очень часто отходы самих котельных и мини-ТЭЦ на биотопливе можно использовать в дальнейшем (удобрения, побочные продукты в виде химических соединений, строительная отрасль и т.д.).
6. Улучшение экологической обстановки.
7. Экономия, и очень часто существенная, на утилизации отходов, таких как навоз/помет, лузга масличных и т.д.

Описание котельной на биотопливе.

В данном разделе представлено описание нескольких котельных, учитывая способ приготовления конечного топлива.

Котельная на биогазе.

Как отмечалось выше, в основу положено приготовление биогаза с последующим его использованием.
Укрупненный состав оборудования такой котельной: площадка приема топлива, оборудование смешения биотоплива, биореакторы, система подачи топлива в биореакторы, системы очистки биогаза (если требуется). Далее в зависимости от целей котельной можно установить классический газовый котел (водогрейный либо паровой). При необходимости выработки электрической энергии в дополнение к тепловой возможна установка либо ГПА, либо газовой турбины, либо паровой турбины. После газовой турбины устанавливается котел-утилизатор.
Такую котельную можно поставить, в том числе и возле очистных сооружений , для утилизации иловых накоплений.

Котельная на генераторном газе.

Укрупненный состав такой котельной: площадка приема исходного топлива, оборудование смешения, оборудование сушки, брикетеры, газогенераторная установка. Полученный генераторный газ далее отправляется либо на котел газовый (водогрейный либо паровой) с адаптированными под этот газ горелками, либо на ГПА (в случае ГПА требуется система очистки генераторного газа). Реализованными на данный момент в странах СНГ являются проекты только на основе получения пиролиза при переработке древесной щепы.

Котельная с применением прямого сжигания.

Состав данной котельной может варьироваться в зависимости от вида биотоплива, планируемого к сжиганию.
Так, например, при утилизации лузги масличных культур укрупненный состав оборудования может состоять из: площадки приема биотоплива, транспортеров топлива, бункеров дозаторов топлива и самих котлов (водогрейных либо паровых). При необходимости смешения нескольких видов лузги либо добавления в лузгу других видов растительных отходов устанавливается оборудование смешения, сушки и брикетирования.
Далее приведен пример работы Турбопар, разработка предпроектного исследования утилизации куриного помета на Украине в 2010году.

Как выбиралась утилизация куриного помета. Краткое описание проекта.


Заказчиком была поставлена следующая задача: крупной птицефабрике требовалось утилизировать до 200 тонн подстилочного помета в день, с получением тепловой и электрической энергии. Работа мини-ТЭЦ круглосуточная и круглогодичная.
На территории стран СНГ подобных проектов нет. Наиболее узким местом в данном проекте является обработка исходной биомассы (подстилочного помета), поскольку ее влажность колеблется в зависимости от поры года. Сам по себе вид топлива, получаемый из данной биомассы, обладает средней теплотой сгорания и содержит много вредных веществ. Были рассмотрены различные варианты приготовления топлива для последующей подачи в котел – от прямой подачи в топку до пылевого метода сжигания (превращение исходного топлива в мелкодисперсную пыль, обладающую более высокими свойствами горения, с последующей подачей этого пылевидного топлива в специальные топки в котлах). В итоге предварительно был принят вариант следующего вида:
- устанавливается хранилище первичного топлива с запасом топлива на 7 дней беспрерывной работы ТЭЦ,
- после этого устанавливается оборудование смешения с другими видами биотоплива,
- оборудование сушки,
- измельчения до необходимых размеров частиц
- и подача в бункеры-дозаторы перед котлами.
Далее осуществляется подача из бункеров-дозаторов непосредственно в паровые котлы.
После котлов устанавливается одна или две паровые турбины конденсационного типа с регулируемыми оборами пара. Пар из отборов отправляется на собственные нужды котельной (на участок сушки топлива), и птицекомплекса.
Электрическая энергия используется на собственные нужды птицекомбината. Остатки неиспользованной электрической энергии передаются в общегосударственную электрическую сеть.
Также данная мини-ТЭЦ помимо электрической и тепловой энергий побочным продуктом будет давать высококачественное удобрение (зола - продукт горения биомассы), которое будет использоваться либо для собственных нужд, либо реализовываться на рынке удобрений (предусмотрен участок пакетирования удобрений).
Здесь намеренно не раскрывается способы утилизации дымовых газов мини-ТЭЦ и детального описания систем оборудования. Скажем только, что при реализации проекта предприятие вырабатывать в сутки около 144 МВт электрической энергии, столько же тепловой. Срок окупаемости данного проекта с учетом всех вложений составит три года. Выполняется архитектурная часть проекта Утилизация куриного помета.

паровые котлы, водогрейные котлы, проектирование очистных сооружений

20 апреля 2018

В предыдущем материале мы подробно описали процесс создания древесных гранул. Закономерно, что следующим шагом в этой цепочке должно стать оборудование, для которого эта продукция выпускается - котельные установки на биотопливе. Наши партнёры - специалисты компании «Ковровские котлы» - поделились своим опытом и рассказали о выборе такого оборудования - с учётом актуальных предложений на рынке.

Мощность и количество котлов

Отправной точкой при выборе любой котельной является определение мощности и её распределения по котлам. На первый взгляд, ничего сложного: посчитать по таблице, прикинуть свой объём отапливаемых помещений и/или добавить объём сушильных камер с коэффициентом и получить результат. Однако в этом деле есть несколько очень важных нюансов.
При выборе оборудования стоит заострить внимание на минимальной мощности автоматизированного твердотопливного котла. Как правило, она составляет от 30% (у современных моделей) до 70%(у самых старых котлов). Поэтому, если диапазон регулировки небольшой, потребитель может попасть в неприятную ситуацию: когда на улице потеплеет, снизить подачу тепла уже не получится. В связи с этим имеет смысл раздробить мощность на два котла: в таком варианте будет проще работать в демисезонные периоды со 100-процентным резервом в случае полной остановки. Таким образом удастся застраховаться от будущих поломок и простоя оборудования - особенно в зимний период. Правда, есть у такого решения и минусы. Два котла чаще всего выходят дороже, и занимают они больше места. К тому же обслуживать две машины затратнее, чем одну, ведь приходится работать с в два раза большим количеством двигателей, датчиков и прочих комплектующих, которые будут требовать необходимого сервиса. Поэтому выбор всегда за потребителем.

Типы исполнения котлов

Второе, на что стоит обратить внимание, это тип исполнения самого котла. Извечный вопрос: водотрубный или жаротрубный/дымогарный? Принципиальная разница двух схем теплопередачи заключается в конструкции теплообменной части, где продукты сгорания биомассы передают свою энергию теплоносителю (воде, например). Жаротрубно-дымогарное исполнение - это, по сути, бочка с водой, она пронизана трубами, внутри которых движется горячий поток газов от горения. Водотрубное исполнение - вариант «наоборот»: внутри трубки бежит вода, а снаружи её нагревает тепло.
Казалось бы, какая разница? На самом деле, большая. В результате сжигания древесины в дымовых газах остаются частицы сажи, которые при некорректной настройке тяги могут налипать на стенках этих труб. От этого никак не защититься. Эти отложения требуют механической чистки ёршиком (возможны бесконтактные решения). Чистить круглую трубу внутри в жаротрубном/дымогарном котле или ту же круглую трубу, к тому же навитую в совсем непрямые экраны, снаружи в водотрубном - это две разные вещи. Вариант «не чистить вообще» следует отбросить сразу, поскольку в таком случае через полгода, а то и раньше, теплопередача уменьшится в среднем на 60-70% и мощность котла упадёт минимум в разы.
Ещё один большой минус водотрубных котлов - ограничение минимальной скорости потока теплоносителя внутри трубочки, по которой бежит вода. Если она не обеспечена мощным насосом или электроснабжение вдруг прекратится (сломается насос, износится крыльчатка, забьётся фильтр и т. д.), то водотрубный котёл сразу же даст течь. Чтобы нагреть бочку с водой, в которой несколько «кубов» (в жаротрубном котле), и локально трубку, где воды всего несколько сот граммов, до критической температуры разрушения, потребуется разное время А это означает разное время на реагирование персонала.
Далее, нужно понимать, что водотрубная система менее металлоёмкая, а значит, она намного дешевле в производстве. Даже если сравнить сухую массу котлов, то разница будет отличаться в разы. Производство водотрубных котлов дешевле, нежели жаротрубных. Но при этом на насосы для водотрубных придётся неслабо потратиться. Они должны быть более производительны по протоку.

Очистка дымовых газов

Нюанс, на котором следует остановиться - это очистка дымовых газов. Тех самых, о которых шла речь выше, и в которых в любом случае в той или иной мере присутствует сажа. Некоторые котлостроители предлагают оборудование без циклона очистки и дымососа. Но это - путь в никуда. Сэкономить тут не получится, а работа котла в итоге будет неправильной, история может закончиться возгоранием. Часто можно услышать: «Меня не интересуют выбросы и чёрный дым из трубы!», «Кто тут ко мне придёт? Меня не видно, и на окраине я!» или «Я работаю в деревне!». Нет, так дело не пойдёт. Согласитесь, когда вокруг котельной снег становится чёрным, это первый звоночек навострить уши. Если собственник не беспокоится о природе, то его однозначно должна волновать опасность потерять производство во время пожара. Ведь одна такая чёрная частичка, зимой упавшая на снег, летом может долететь ещё недогоревшая.

Система автоматики

Следующий момент, требующий более углублённого внимания со стороны покупателя, это система автоматики. Производители могут писать «в автоматическом режиме…», но на деле всё оказывается не так, как себе это представляет заказчик. Всегда требуется уточнение, что именно понимается под термином «система автоматики». Что конкретно работает в автоматическом режиме, а что оператору придётся подкручивать на месте.
Стоит пояснить, что вопрос здесь заключается в правильной организации горения биотоплива, а точнее - в правильном смесеобразовании в топочном устройстве. Разберёмся, что это такое. Для правильного горения необходимо соблюдать точную пропорцию топлива и кислорода, чтобы достигнуть требуемой температуры теплоносителя, точно так же, как в двигателе автомобиля. Если кислорода будет слишком мало, будет происходить неполное сгорание, и из дымовой трубы пойдёт чёрный дым (углерод не до конца окислился). Опасность состоит в том, что этот процесс может закончиться теперь уже за пределами котельной, что приведёт к возгоранию. Если кислорода будет слишком много, будут образовываться вредные газы с названием NОx, и экологи не упустят такой шанс наказания владельца этого оборудования. Вот и получается, что печку сложить может каждый печник, а вот управлять процессом горения не всем по зубам.
Из опыта общения с владельцами котельных установок можно сделать вывод, что что многие под автоматизацией понимают механизацию подачи топлива, а кислород регулируют на глаз. Далеко не все знают, что такое газоанализатор и контроль кислорода, и, самое главное, чем грозит неправильная настройка.
Работа любого оборудования, в том числе котла на биотопливе, сопряжена со многими тонкостями, знания о которых приходят вместе с опытом работы с такими системами. Поэтому при выборе подобных агрегатов лучше всего прибегнуть к помощи специалистов.

Источник: http://dvinanews.ru/-cggvfcd9

Объект построен в посёлке Октябрьском в рамках реализации приоритетного инвестпроекта по организации лесоперерабатывающего производства на базе Устьянского лесопромышленного комплекса (УЛК).

В Архан­гель­ской области откры­та самая мощ­ная в Вос­точ­ной Европе био­котель­ная

Проект, имеющий огромное значение для всего района, воплотила в жизнь Устьянская теплоэнергетическая компания. Генеральный директор предприятия Владимир Паршин рассказал, что компания была создана в 2011 году на базе выкупленного имущества предприятия-банкрота «Устья – лес». В состав этого комплекса входила производственная отопительная котельная 1962 года постройки, на которой произошёл пожар. Устранение последствий возгорания и стало отправной точкой в строительстве новой современной котельной, работающей на биотопливе. Возведение новой котельной началось в июле 2012 года.

Для тепла и социального комфорта

Глава региона Игорь Орлов подчеркнул:

«Сегодняшнее событие меняет облик нашей территории, повышает уровень социального, экономического и теплоэнергетического комфорта северян. И район, и посёлок, и компания шли к открытию котельной достаточно уверенными шагами. Очень хочется, чтобы таких проектов в Архангельской области было больше».

От имени Правительства РФ к присутствующим обратился министр природных ресурсов и экологии Сергей Донской:

«Мы гордились и будем гордиться нашими природными ресурсами, Архангельская область – этому подтверждение. Теперь будем гордиться и такими уникальными масштабными сооружениями – не меньше египетских пирамид, которые простоят века. И, конечно, гордиться теми людьми, которые всё это построили. Люди идут к своей цели чётко, размеренно, создавая уникальные по меркам Европы и России, а в скором будущем – и мира – объекты».

От котельной – к заводу!

Генеральный директор группы компаний «УЛК», вдохновитель проекта Владимир Буторин отметил:

Умная техника

Авторы-создатели провели для гостей обзорную экскурсию по предприятию. Умная котельная полностью автоматизирована: в процессе разгрузки топлива не участвуют даже операторы машин, которые привезли его в котельную. А директор объекта энергетики может следить за происходящим в режиме онлайн, находясь в любой точке мира.

Новая биокотельная обеспечит теплом более десяти тысяч жителей посёлка, а если говорить об уникальных свойствах, то её мощность рассчитана с учётом перспективного плана развития и жилищной застройки Октябрьского на ближайшие 25 лет.

Объём инвестиций, вложенных в проект, превысил 782 миллиона рублей. В котельной впервые в России установлены пять итальянских котлов мощностью 9 мВт. Их уникальность в том, что в качестве топлива можно использовать и опилки, и щепу, и кору.

Как рассказал руководитель Устьянской теплоэнергетической компании Владимир Паршин, общая мощность котельной – 45 мВт.

Модификация котлов позволяет использовать опилки, щепу, кору, – рассказывает Владимир Паршин. – Топливом послужат древесные отходы от лесоперерабатывающих производств предприятий группы компаний «УЛК». Отмечу, что производственный процесс на новой котельной полностью автоматизирован. Там, где раньше бы понадобилось более 50 человек, теперь будет достаточно девяти.

Ввод новой установки в строй не только позволит снизить для конечных потребителей тариф на тепловую энергию, но и сократит расходы бюджетов всех уровней.

К 2030 году Архангельская область планирует полностью отказаться от привозного топлива

Источник: http://dvinanews.ru/-fafsg8jr

В Архангельской области продолжается перевод местной энергетики на газ и местные виды топлива. Очередную биотопливную котельную начали строить в Красноборске, сообщает районная газета «Знамя».

На стройплощадке новой красноборской котельной. Фото газеты «Знамя»

Уже смонтирован фундамент, возведён каркас здания, организована зона для складирования топлива, где устанавливается рубительная машина, в Кирове заказаны котлы, которые в ближайшее время должны прибыть в райцентр.

План реконструкции системы со строительством современной котельной, работающей на местном биотопливе предложило министерство ТЭК и ЖКХ Архангельской области. Предложение поддержали районные власти. Планируется, что с введением в эксплуатацию новой котельной будут закрыты восемь низкоэффективных котельных села, работающих на привозном угле.

В авангарде энергетики

Закрыть старые котельные и подключить потребителей села к новой невозможно без строительства объединяющих сетей и полной замены уже изношенных теплотрасс. Министерству ТЭК и ЖКХ Архангельской области при участии регионального центра энергосбережения удалось привлечь на объект федеральные средства в размере более 29 миллионов рублей.

Средства направлены на строительство абсолютно новых тепловых сетей протяженностью 3,2 километра, выполненных, в том числе, и из современных изолированных полимерных труб.

С введением в эксплуатацию новой котельной и современных тепловых сетей экономия тепловой энергии составит 2131 Гкал в год, электроэнергии – 423 400 кВтч в год, воды – 861 кубометра в год, а 2 837 тонн угля, которые потреблялись ежегодно, будут замещены местными видами топлива. Новая система теплоснабжения в Красноборске по энергоэффективности, экологичности должна стоять наравне со многими современными системами других регионов страны.

Глобальная экономия

Напомним, что с 2012 по 2014 годы правительство Архангельской области вложило в модернизацию котельных Поморья 4,7 миллиарда рублей, из которых 3,7 миллиарда составляют привлечённые инвестиции.

Врио губернатора Архангельской области Игорь Орлов подчеркнул:

«Мы уже закрыли 28 неэффективных котельных и реконструировали 25 старых генераций, построили множество современных объектов в разных уголках региона. Но в Поморье ежегодно образуется 3,8 миллиона кубометров неиспользуемых отходов лесозаготовки и деревообработки. Это вдвое превышает топливную потребность еще не переведенных на биотопливо котельных. Поэтому уход региона от завозных видов топлива неминуем. Итогом этой работы должно стать их полное замещение».

Согласно концепции развития локального теплоснабжения региона на ближайшие 15 лет, принятой в ноябре прошлого года, к 2030 году область планирует полностью отказаться от привозного топлива. В итоге реализации данного плана топливный баланс региона должен выглядеть так:

  • 54 процента – природный газ;
  • 44 процента – биотопливо;
  • 2 процента – каменный уголь.

От жидкого топлива (мазута и дизтоплива) в локальной энергетики к 2030 году планируется отказаться вовсе.

Кроме того, в Поморье реализуется сразу несколько проектов, направленных на утилизацию древесных отходов и производство нового вида продукции – современного древесного топлива.

В период 2012-2014 годов введены в эксплуатацию два завода по производству древесных гранул общей проектной мощностью 150 тысяч тонн – на Цигломенском участке ЗАО «Лесозавод 25» и ОАО «ЛДК №3». Построен участок по производству гранул на Вельском ДОКе мощностью 18 тысяч тонн, который будет расширяться с запуском лесозавода ООО «Вельская лесная компания».

На предприятиях малого бизнеса Виноградовского, Вельского, Устьянского, Плесецкого, Приморского районов организовано производство древесных брикетов (евродров).

По прогнозу регионального правительства, к 2020 году ежегодный объём производства биотоплива в области может достигнуть 400 тысяч тонн.