На сколько прочно склеиваются слои пластика или пока жены нет дома. Какой тип стали лучший для меча

С раннего средневековья до наших дней солдаты противоборствующих сторон для защиты своей головы в бою использовали металлические шлемы различной формы и прочности. Со временем они эволюционировали в каски, обязательные к ношению солдатами во время боевых действий. При этом массовое производство данных головных уборов в нашей стране началось лишь в период Великой Отечественной войны. Возникает вопрос, насколько были прочны советские каски и способны защитить воина в бою?

Боевая задача работникам тыла

По данным статистики за время Великой Отечественной войны в Советском Союзе было произведено более десяти миллионов металлических касок. Впрочем, не так важно было количество, как качество данных головных уборов. Как показала война, оно было на высоте. Дело в том, что будто предчувствуя надвигающуюся трагедию, Советское правительство еще в 1932 году, почти за десять лет до начала войны поручило Лысьвенскому металлургическому заводу, ведущего свою историю с 1785 года разработать новую металлическую каску для солдат пехоты. Задача оказалась практически не выполнимой. Каска должна была надежно защищать голову солдата от выстрела винтовки, автомата, осколков артиллерийских снарядов и шрапнели. Мало того, заказчик в лице Министерства Обороны СССР хотел, чтобы головной убор имел удобную форму, и весил не более 800 грамм для самого большого пятого размера головы. Отказаться от сложного заказа руководство предприятия не могло, и его специалисты принялись за дело. При этом необходимо отметить, что Лысьвенский металлургический завод был выбран для производства касок не случайно. В царской армии подобных металлических касок, предназначенных для защиты солдат от пулевых и осколочных ранений, не изготовлялось. В стране выпускались лишь каски для пожарных. Причем их производство осуществлялось как раз на Лысьвенском металлургическом заводе. Не удивительно, что заказ на создание касок для солдат поступило именно на это предприятие, которое располагалось на Урале вдали от театра военных действий.

Первый вариант советской каски появился в 1936 году, но он абсолютно не соответствовал требованиям заказчика. Впоследствии было выпущено еще несколько модификаций касок, но, ни одна из них не дотягивала до высоких стандартов установленных Министерством Обороны СССР. Только в 1940-м году, наконец, появился СШ-40 (стальной шлем образца 1940 года), соответствующий всем предъявленным требованиям. Предыдущие модели каски отличало низкое качество стали и практически полное отсутствие пулестойкости. К тому же каски более ранних модификаций нельзя было одевать на теплые головные уборы, что в условиях русских морозов являлось существенным недостатком. В каске 1940-года было усовершенствовано подтулейное устройство, а также механизм амортизации. Но главным оказалась разработка углеродистой кремний-марганцево-никелевой стали, получившей уловное обозначение И-1. Именно ее применение позволило добиться необходимой пулеустойчивости.

Испытания

Сразу после появления первых опытных образцов каски начались ее испытания на соответствие требованиям заказчика. Оказалось, что каска, выполненная из броневой стали И-1 толщиной 1,2 миллиметра являлась надежным средством защиты от пуль и осколков артиллерийских снарядов. Данные характеристики стального шлема были подтверждены с помощью отстрела из 3-х линейной винтовки, а также пистолетов марки «Наган» и «ТТ». В ходе первых испытаний в тире завода в стальной шлем стреляли с расстояния 10 метров из винтовки Мосина, рассчитанной на дальность стрельбы от 800 до 1000 метров, а также из «нагана». Испытания новая каска с честью выдержала. Затем на полигоне стальной шлем расстреляли из автомата ППШ с дистанции 115 метров, результат также оказался удовлетворительным. Данные испытаний аккуратно заносились в соответствующие журналы и сохранились до наших дней. Одновременно, новую советскую каску сравнили с аналогичными стальными шлемами, стоящими на вооружении армий Германии, Швеции и Италии. При этом отметить, что к началу войны у немцев было несколько модификаций стальных шлемов, но как показали натурные испытания, все они существенно проигрывали СШ-40 в пулестойкости, а также легкости и возможности использования в зимних условиях. Самое интересное, что во время войны сталь для каски, как и ее форму неоднократно пытались усовершенствовать, но добиться характеристик лучших, чем у стали И-1 и более оптимальной формы, чем у СШ-40 так и не смогли. Данный факт был зафиксирован после войны специальной комиссией Министерства Обороны СССР.

Это достаточно распространенный вопрос среди новичков, "лучший тип" зависит от типа меча и от того, в каких целях его собираются использовать...

Нужно упомянуть, что присутствует ряд более важных факторов, чем сталь, из которой сделан меч (например, качество ковки важнее чем тип стали, из которой сделан меч - меч из хорошо закаленного куска самой дешевой нелегированной углеродистой стали гораздо лучше, чем плохо закаленный меч из стали L6.

Но давайте не будем все усложнять!

Так-что вместо этого давайте спросим "какие типы стали в основном используются для ковки мечей - и какие у них сильные и слабые стороны"(конечно, когда они закалены как надо!)?

Нержавеющая сталь

Раньше почти каждый меч был сделан из нержавеющей стали. Теперь она используется только для дешевых декоративных мечей - и не просто так!

Мечи из нержавеющей стали(или любые другие мечи в длину свыше 12") считаются слишком хрупкими для применения и ломаются очень легко (как было продемонстрировано на печально известном видео home shopping video ниже.

Как объяснить это с технической точки зрения - нержавеющая сталь "не ржавеет" из-за того что в ней содержится высокий процент хрома (более 11%), и когда клинок достигает в длину 12"(меч), связь между хромом и сталью ослабевает. Так-что место мечей из нержавеющей стали - на стенке.

Примечание: Есть исключения из этого правила. Мечи из нержавеющей стали могут быть использованы для практики бесконтактных форм.

нелегированная углеродистая сталь

Для хорошего меча (естественно, закаленного как надо) нелегированная углеродистая сталь подходит лучше всего! Но что это значит?

Когда углеродистая сталь используется для ковки мечей, которая обозначается несколькими цифрами: первые две - 10, потом идут цифры от 1 до 99 (каждая цифра обозначает содержание 0.1% углерода в стали.

Чаще всего для ковки мечей используются 3 типа углеродистой стали: 1045, 1060 и 1095. Эксперты утверждают, что идеальное содержание углерода в стали, пригодной для хорошего и прочного меча - от 0.5 до 0.7 %, однако сталь 1045,самая недорогая, также используется.

Углеродистая сталь 1045

Мечи из этого типа стали сделать легко и недорого (как при ручной ковке, так и при прессинге и на станке). Эта сталь может быть закалена, и требует минимум затрат стали.

Когда меч такой стали хорошо закален, он достаточно крепок. И если вы найдете недорогой меч, который помечен как "сделанный из высшей углеродистой стали", это скорее всего сталь 1045, и меч, сделанный на станке.

Углеродистая сталь 1060

Мечи из этой стали - это идеальной баланс между прочностью и гибкостью. Они так-же известны своей прочностью. Мечи COLD STEEL сделанны из стали 1060.

Мечи из 1060 стали очень популярны несмотря на то, что их сложнее ковать.

VIDEO: Cold Steel Demo

Пример того на сколько прочны мечи из 1060 стали.

1095 углеродистая сталь

Эта сталь очень жесткая, и если мечи из 1095 стали закалены не должным образом, могут возникнуть проблемы при контакте с ещё более жесткой поверхностью (например например при попадании по деревянному стенду).

Итак, сталь с высоким содержанием углерода позволяет создавать особенно острые мечи. Но в этом случае острота может стоить мечу прочности.

Конечно, это не значит, что мечи из 1095 стали - хрупкие! Но определенные преимущества в прочности у мечей, сделанных из стали с низким содержанием углерода, есть.

Мечи из 1095 стали имеют репутацию "относительно" хрупких, и ключевое слово здесь - относительно. Все зависит от того, для чего вам нужен меч.

Пружинная сталь

Существуют два нужных нам типа пружинной стали - 5160 и 9260.Так-же как и в углеродистой стали, в них содержится 0.60% углерода (идеальный баланс между прочностью и гибкостью). Когда такая сталь закалена как надо, после определенного воздействии (например, искривления) она может возвращаться в свою исходную форму.

5160 пружинная сталь

В ней содержится 7% хрома - не достаточно, чтобы получить нержавеющую сталь (где нужно минимум 13%). Выкованный из такой стали, получается очень прочным.

5160 сталь так-же использовалась знаменитым Nepalese Khurki. Он создал невероятно острый и прочный меч, с помощью которого одним ударом отрубили голову буйволу.

Опять же, все зависит от закалки. Плохо закаленный меч из стали отличного качества может оказаться бесполезным.

VIDEO: Flex Test

На видео меч возвращается в исходную форму, будучи изогнутым на 90 градусов!

Мечи из 9260 стали почти в два раза прочнее мечей из 5160 стали (как пишет efunda.com)

Тем не менее такие мечи так-же могут ломаться.

VIDEO: 9260 Sword Breaking

На видео показано, как меч ломается при плохом ударе о толстую кость (толще, чем любая человеческая кость).

Мораль - любой меч может сломаться...

Инструментальная сталь

В последнее время эта сталь достаточно популярна - из нее получаются прочные острые мечи. На рынке существуют несколько типов данной стали. Мы поговорим о двух из них: T10 и L6 Bainite

Инструментальная сталь T10

В этой стали из вольфрамового сплава содержится высокий процент углерода (1%). Обычно это сталь называют "высокоскоростной".

T10 - очень твердая сталь (HRC60), и мечи, правильно закаленные, очень прочны. Благодаря вольфраму мечи из Т10 устойчивее к царапинам, чем другие мечи с таким-же содержанием углерода. Они так-же сравнительно тяжелее.

VIDEO: Destructive Testing of a T10 Tool Steel Sword

На видео показано, что мечи из Т10 очень прочны.

Это так-же инструментальная сталь, (используется для изготавления пил для разрезания гипсовой повязки) где L - низколегированный сплав.

Когда закалены как следует, такие мечи считаются самыми крепкими. Такая репутация появилась у мечей из L6 благодаря работе Howard Clark из Bugei Trading company, который в поздних 90х производил мечи ручной работы из L6.

Такой меч трудно закалить (из-за жесткости стали), и так-же нужно постоянно поддерживать в хорошем состоянии, не давая ему заржаветь. Мечи из L6 - самые дорогие (от 1000$ США)

Дамаская сталь

Катана из дамаской стали

у многих людей возникает вопрос о дамаской стали, и многие считают её лучшей для мечей.

Но даже зная это, у многих людей создается впечатление, что такая сталь прочнее других, и лезвия мечей, сделанные из такой стали, острее.

Это не правда.

Что касается японских мечей, - исторически такая технология применялась к японской железной руде (не очень хорошего качества) чтобы улучшить ее свойства. С качеством руды на сегодняшний день такие меры не обязательны.

Металлы использовались человеком еще на заре цивилизации. Одним из первых известных была медь, благодаря своей легкости в обработке и широкой распространенности. Археологи находили в процессе раскопок тысячи медных изделий. Прогресс не стоит на месте, и вскоре человечество научилось производить прочные сплавы, чтобы изготавливать оружие и сельскохозяйственные инструменты. По сей день эксперименты с металлами не прекращаются, так что стало возможным выявить, какой самый прочный металл в мире.

Иридий

Итак, самый прочный металл ‒ это иридий. Получают его путем выпадения осадка от растворения платины в серной кислоте. По прошествии реакции вещество приобретает черный цвет, в дальнейшем в процессе различных соединений может менять цвет: отсюда и название, в переводе означающее "радуга". Иридий открыли в начале XIX века, и с тех пор было найдено всего два способа растворить его: расплавленная щелочь и перекись натрия.

Иридий очень редко встречается в природе, в составе земли его количество не превышает 1 к 1 000 000 000. Вследствие этого, одна унция материала стоит как минимум 1000 долларов.

Иридий широко применяется в разных сферах деятельности человека, особенно в медицине. Из него производят глазные протезы, слуховые аппараты, электроды для мозга, а также специальные капсулы, которые вживляют в раковые опухоли.

По теории ученых, столь малое количество вещества говорит о том, что оно имеет инопланетное происхождение, а именно, принесено каким-либо астероидом.

Другой самый крепкий металл в мире, наименование которого произошло от названия нашей страны. Впервые его обнаружили на Урале. Вернее там нашли платину, в составе которой русские ученые позднее выявили новый металл. Это было 200 лет назад.

Благодаря своей красоте рутений нередко применяется в ювелирном деле, но не в чистом виде, ведь он очень редок

Рутений относится к благородным металлам. Он обладает не только твердостью, но и красотой. По твердости он лишь немного уступает кварцу. Но при этом он весьма хрупкий, его легко раскрошить в порошок или разбить, уронив с высоты. Кроме того, это самый легкий и прочный металл, его плотность едва ли составляет тринадцать граммов на сантиметр в кубе.

При всем своем плохом сопротивлении ударам рутений прекрасно противостоит высоким температурам. Чтобы его расплавить, необходимо нагреть более чем до 2300 градусов. Если сделать это при помощи электрической дуги, вещество может перейти сразу в газообразное состояние, миновав стадию жидкости.

В составе сплавов его применение чрезвычайно широко, даже в космической механике, к примеру, сплавы металлов рутения и платины были избраны для изготовления топливных элементов для искусственных спутников Земли.

Первым на Земле этот металл открыл шведский ученый Экеберг. Но выделить его в чистом виде химику так и не удалось, с этим возникли трудности, поэтому он и получил название греческого героя мифов, Тантала. Активно использоваться тантал начал лишь в период Второй мировой войны.

Тантал ‒ твердый долговечный металл серебристого цвета, при обычной температуре проявляет мало активности, окисляется лишь при нагреве свыше 280°С, а плавится лишь при почти 3300 Кельвин.


Невзирая на свою прочность, тантал довольно пластичен, приблизительно как золото, и работа с ним не вызывает затруднений

Допускается использование тантала в качестве заменителя нержавеющих сталей, срок службы может отличаться на целых двадцать лет.

Также тантал применяется:

  • в авиации для изготовления жаропрочных деталей;
  • в химии в составе антикоррозийных сплавов;
  • в ядерной энергетике, поскольку он крайне устойчив к парам цезия;
  • медицине для изготовления имплантатов и протезов;
  • в вычислительной технике для производства сверхпроводников;
  • в военном деле для разного рода снарядов;
  • в ювелирном деле, поскольку при окислении он может приобретать различные оттенки.

Этот металл считается биогенным, значит, способен положительно влиять на живые организмы. К примеру, количество хрома регулирует уровень холестерина. Если хрома в организме меньше шести миллиграммов, то это приводит к резкому увеличению холестерина в крови. Получить ионы хрома можно, к примеру, из перловки, утятины, печёнки или свёклы.
Хром тугоплавок, не реагирует на влагу и не окисляется (только при нагревании выше 600°С).


Металл активно используют для создания хромированных покрытий, зубных коронок

Этот долговечный металл ранее назывался глюцинием, потому что люди отметили его сладковатый вкус. Кроме того, у этого вещества еще много удивительных свойств. Он неохотно вступает в химические реакции. Чрезвычайно прочен: опытным путем установлено, что бериллиевая проволока толщиной в миллиметр способна удержать на весу взрослого человека. Для сравнения, алюминиевая проволока выдерживает лишь двенадцать килограммов.

Бериллий очень ядовит. При попадании в организм он способен заменять магний в костях, это состояние носит название бериллиоз. Он сопровождается сухим кашлем и отечностью легких, может привести к смерти. Ядовитость, пожалуй, единственный существенный недостаток бериллия для человека. В остальном же у него масса плюсов и масса способов применения: тяжелая промышленность, ядерное топливо, авиация и космонавтика, металлургия, медицина.


Бериллий очень легок, в сравнении с некоторыми щелочными металлами

Этот прочный металл еще более дорогой, чем иридий (а уступает лишь калифорнию). Однако применяется он в таких областях, где важнее результат, чем затраты на него: для производства медицинского оборудования в самые лучшие мировые клиники. Кроме того, может использоваться для изготовления электрических контактов, деталей измерительной техники и дорогих часов вроде "Ролекс", электронных микроскопов, военных боеголовок. Благодаря осмию они становятся прочнее и выдерживают более высокие температуры, вплоть до экстремальных.

Осмий не встречается в природе самостоятельно, только в паре с родием, так что после добычи предстоит задача разделить их атомы. Реже встречается осмий в "комплекте" с платиной, медью и некоторыми другими рудами.


В год на планете вырабатывается лишь несколько десятков килограммов вещества

Этот металл обладает очень прочной структурой. Сам он беловатого цвета, а при измельчении в порошок становится черным. Металл очень редок и добывается в совокупности с другими рудами и минералами. Концентрация рения в природе ничтожно мала.

Из-за невероятной дороговизны вещество используются лишь в случаях крайней необходимости. Ранее его сплавы благодаря своей жаростойкости использовались в авиации и ракетостроении, в том числе для оснащения сверхзвуковых истребителей. Именно эта сфера и была основным пунктом мирового потребления рения, сделав его материалом военно-стратегического назначения.

Из рения делают нити накаливания и пружины для измерительных приборов, самоочищающиеся контакты и специальные катализаторы, необходимые для получения бензина. Именно это в последние годы повысило спрос на рений в разы. Мировой рынок готов буквально сражаться за этот редкий металл.


Во всем мире есть лишь одно его полноценное месторождение, и находится оно в России, второе, гораздо меньше, - в Финляндии

Ученые изобрели новое вещество, которое по своим свойствам может стать прочнее известных металлов. Его назвали «Ликвид-металл». Эксперименты с ним начались совсем недавно, но он уже зарекомендовал себя. Вполне возможно, в скором времени «Ликвид-металл» потеснит так хорошо известные нам металлы.

Когда речь идет о твердом и прочном металле, то в своем воображении человек сразу же рисует воина с мечом и в доспехах. Ну или с саблей, и обязательно из дамасской стали. Но сталь, хоть и прочный, но не чистый металл, ее получают путем сплава железа с углеродом и некоторыми другими металлами-добавками. И при необходимости сталь подвергают обработке, чтобы изменить ее свойства.

Легкий прочный металл серебристо-белого цвета

Каждая из добавок, будь то хром, никель или ванадий, отвечают за определенное качество. А вот для прочности добавляют титан – получаются самые твердые сплавы.

По одной версии, металл получил свое название от Титанов, могучих и бесстрашных детей богини Земли Геи. Но по другой версии, серебристое вещество названо в честь королевы фей Титании.

Титан открыли немецкий и английский химики Грегор и Клапрот независимо друг от друга с разницей в шесть лет. Произошло это в конце 18-го века. Вещество тут же заняло место в периодической системе Менделеева. Спустя три десятилетия был получен первый образец металлического титана. И довольно долго металл не использовали из-за его хрупкости. Ровно до 1925 года – именно тогда, после ряда опытов, иодидным методом был получен чистый титан. Открытие стало настоящим прорывом. Титан оказался технологичным, на него тут же обратили внимание конструкторы и инженеры. И сейчас металл из руды получают, в основном, магниетермический способом, который предложили в 1940 году.

Если затрагивать физические свойства титана, то можно отметить его высокую удельную прочность, прочности при высоких температурах, маленькую плотность и коррозийную стойкость. Механическая прочность титана в два раза выше прочности железа и в шесть – алюминия. При высоких температурах, где легкие сплавы уже не работают (на основе магния и алюминия), на помощь приходят титановые сплавы. К примеру, самолет на высоте в 20 километров развивает скорость в три раза выше, чем скорость звука. И температура его корпуса при этом около 300 градусов по Цельсию. Нагрузки такие выдерживает только титановый сплав.

По распространенности в природе металл занимает десятое место. Титан добывают в ЮАР, России, Китае, Украине, Японии и Индии. И это далеко не полный перечень стран.

Титан - прочный и легкий металл в мире

Перечень возможностей применения металла вызывает уважение. Это военная промышленность, остепротезы в медицине, ювелирные и спортивные изделия, платы мобильных телефонов и многое другое. Постоянно возносят титан конструкторы ракето, авиа, кораблестроения. Даже химическая промышленность не оставила металл без внимания. Титан отличен для литья, ведь очертания при отливке точны и имеют гладкую поверхность. Расположение атомов в титане аморфное. И это гарантирует высокую прочность при растяжении, ударную вязкость, превосходные магнитные свойства.

Твердые металлы с наибольшей плотностью

Одними из самых твердых металлов, так же, являются осмий и иридий. Это вещества из платиновой группы, у них самая высокая, почти одинаковая, плотность.

Иридий открыли в 1803 году. Обнаружил металл химик из Англии Смитсон Теннат, во время исследования природной платины из Южной Америки. Кстати, с древнегреческого «иридий» переводится как «радуга».


Самый твердый металл добыть довольно сложно, поскольку в природе его почти нет. И часто металл находят в метеоритах, которые упали на землю. По словам ученых, на нашей планете содержание иридия должно быть намного больше. Но из-за свойств металла – сидерофильности – он находится на самой глубине земных недр.

Иридий довольно сложно обработать и термическим, и химическим способом. Металл не вступает в реакцию с кислотами, даже сочетаниями кислот при температуре меньше 100 градусов. При этом, вещество подвержено процессам окисления в царской водке (это смесь соляной и азотной кислот).

Интерес, как к источнику электрической энергии, представляет изотоп иридия 193 m 2. Поскольку период полураспада металла составляет 241 год. Нашел широкое применение иридий в палеонтологии и промышленности. Его используют при изготовлении перьев для ручек и определение возраста разных слоев земли.

А вот осмий открыли на год позже, чем иридий. Этот твердый металл нашли в химическом составе осадка платины, которая была растворена в царской водке. И название «осмий» получилось из древнегреческого слова «запах». Металл не подвержен механическому воздействию. При этом, один литр осмия в разы тяжелее, чем десять литров воды. Впрочем, это свойство пока осталось без применения.


Осмий добывают на американских и российских рудниках. Богато его месторождение и в ЮАР. Довольно часто металл находят в железных метеоритах. Для специалистов представляет интерес осмий-187, который экспортируется только из Казахстана. С его помощью определяют возраст метеоритов. Стоит отметить, что всего один грамм изотопа стоит 10 тысяч долларов.

Ну а используют осмий в промышленности. И не в чистом виде, а в виде твердого сплава с вольфрамом. Производят из вещества лампы накаливания. Осмий является катализатором при изготовлении нашатырного спирта. Редко из металла изготавливают режущие части для нужд хирургии.

Самый твердый металл из чистых

Самый твердый из чистейших металлов на планете – хром. Он отлично поддается механической обработке. Металл голубовато-белого цвета обнаружили в 1766 году в окрестностях Екатеринбурга. Минерал тогда получил название «сибирский красный свинец». Его современное название – крокоит. Через несколько лет после открытия, а именно, в 1797 году, французский химик Воклен выделил из металла новый металл, уже тугоплавкий. Специалисты сегодня полагают, что полученное вещество – карбид хрома.


Название этого элемента образовано от греческого «цвет», ведь сам металл славится разнообразием окраски своих соединений. Хром довольно просто встретить в природе, он распространенный. Найти металл можно в ЮАР, которая по добыче занимает первое место, а так же в Казахстане, Зимбабве, России и Мадагаскаре. Присутствуют месторождения в Турции, Армении, Индии, Бразилии и на Филиппинах. Специалисты особенно ценят некоторые соединения хрома – это хромистый железняк и крокоит.

Самый твердый металл в мире - вольфрам

Вольфрам – это химический элемент, самый твердый, если рассматривать его в ряду с другими металлами. Его температура плавления необычайно высока, выше – только у углерода, но это не металлический элемент.

Но природная твердость вольфрама в то же время не лишает его гибкости и податливости, что позволяет выковывать из него любые необходимые детали. Именно его гибкость и теплоустойчивость делает вольфрам идеально подходящим материалом для выплавки мелких деталей осветительных приборов и деталей телевизоров, например.


Используется вольфрам и в более серьезных областях, например, оружестроении - для изготовления противовесов и артиллерийских снарядов. Этим вольфрам обязан высокому показателю плотности, что делает его основным веществом тяжелых сплавов. Плотность вольфрама близка по показателю к золоту – всего несколько десятых составляют разницу.

На сайте сайт можно прочитать какие же металлы являются самыми мягкими , как их используют, и что из них делают.
Подпишитесь на наш канал в Яндекс.Дзен

Появилась информация, что в новом смартфоне iPhone 6 производитель откажется от использования Gorilla Glass и будет снабжать экран сапфировыми стеклами. Давайте разберемся на сколько же сапфир тверже и прочнее Gorilla Glass?


Прежде всего САПФИР — это не стекло вовсе!

ЧТО ТАКОЕ САПФИР
Природный сапфир (он же корунд, он же рубин) — это драгоценный минерал, отличающийся крайней твердостью. Выше сапфира располагается только алмаз. Соответственно и поцарапать его ни песком, сверлом, каким-либо абразивом без алмазной основы — НЕЛЬЗЯ. Химическая формула Al 2O 3 Драгоценные сапфиры, рубины имеют цвет благодаря природным примесям других металлов. Химически чистый сапфир абсолютно прозрачен.

КАК ПРОИЗВОДЯТ САПФИР?
Оксид алюминия очень дешевое вещество. Но это порошок или же мелкие кристаллы с дефектами, которые никому не нужны. Для получения в промышленности в специальном тигле расплавляют оксид алюминия при температуре свыше +2400 °С и заливают в форму. Но самое главное — для получения цельного крупного монокристалла его приходится крайне медленно и равномерно охлаждать в течение 70-ти дней. Малейшее отклонение от графика приводит к образованию трещин и полной негодности для дальнейшего применения.

В результате охлаждения получаются болванки весом 150кг, которые затем режутся (вероятно алмазной проволокой или лазером, по этому поводу Apple уже оформила патент:)).

НА СКОЛЬКО ПРОЧНЫЙ САПФИР?
По шкале твердости Мооса твердость сапфира 9. Высшая оценка у алмаза — 10. Сапфир очень, очень твердый. В частности сапфировые 9они же корундовые) пластины и шарики применяются в танковой броне многих стран мира для противодействия твердым подкалиберным снарядам из вольфрама.

БУДЕТ ЛИ САПФИР ЧАЩЕ БИТЬСЯ?

сапфировые болванки

Многие наивно полагают, что вместе с приобретением твердости новые экраны станут значительно более хрупкими. ЭТО МИФ!!!

Нет — сапфир ни в коем случае не будет хрупче стекла! Gorilla Glass — это специальные каленые сорта стекла, которые в самом деле хрупкие. Но стекло — это аморфное тело, не имеющее кристаллической решетки вовсе. Корунд напротив — это монокристалл с четко упорядоченными узлами, благодаря чему и появляется такая прочность. При любых условиях и тестах, ударах, изгибах, скручиваниях и т.п. сафпир ВСЕГДА (!) будет в разы прочнее любого стекла. И при этом тверже. Его старший собрат алмаз вообще крайне тяжело разрушить даже молотом (природные алмазы ювелиры раскалывают используя естественные трещины).

Порезанные заготовки сапфира - будущие экраны смартфонов

Разумеется всему есть предел, и прочности сапфира тоже. Стекло ведь не такое уж и толстое. Но в любом случае после применения сапфировых «стекол» в смартфонах можно будет говорить, что основной несущей конструкцией будет уже не корпус, а экран. Очень многое будет зависеть от толщины этого самого стекла.

БОИТСЯ ЛИ САПФИР ОГНЯ ИЛИ ЧЕГО-ТО ЕЩЕ?


Нет, сапфир не боится ни огня, ни большинства кислот щелочей или чего-то еще. По-сути (химически) это сгоревший алюминий, повторно сгореть он не может даже при нагреве. Сапфир боится только алмаза и идиотов.

ЦЕНА
Gorilla Glass стоит с конвейера 3$, сапфирная панель — 30$ и все время дешевеет. Но наверняка щедрый Apple накинет сверху еще 200-300$.

Предвосхищая ожидаемые вопросы:

— А можно ли в Айфон 6 забить гвоздь?
или
— Спасет ли сапфировое стекло от пули?
можно сразу ответить… Забить гвоздь будет проблематично — понадобится приличный молоток и, собственно, гвоздь. Примечательно, что защита телефоном с сапфировым стеклом от пули тоже определенная будет, не зря же корунд пихают в танки! Но вместо транжирства денег на новомодные игрушки купите лучше добротный стационарный комп. Он тепло шуршит, и стрелять в вас никто не будет и гвозди будете забивать куда жена попросит.

P.S. И еще раз — сапфир это НЕ СТЕКЛО!

Не забываем лайкать.