Изготовление печатных плат производство. Изготовлю печатные платы на заказ! Промышленное оборудование для производства печатных включает в себя

Печатные платы — электронное сердце любого современного гаджета. Представляет собой пластину из диэлектрика с электроповодящими цепями, нанесенными на поверхность этой пластины, либо внедрены внутрь ее. С помощью печатных плат соединяются все электронные компоненты между собой. Для этого выводы компонентов припаиваются к плате к монтажным площадкам или отверстиям, а за счет рисунка электроповодящих цепей компоненты взаимодействуют друг с другом.

Обычно, токопроводящий рисунок на плате выполняется из фольги, а сама основа — диэлектрическая пластина — из стеклотекстолита, гетинакса. Печатные платы подразделяются на односторонние ОПП (фольга с одной стороны), двусторонние ДПП (фольга с двух сторон), многослойные МПП (получаются методом склеивания между собой нескольких ОПП или ДПП, таким образом, что внутри диэлектрической пластины размещаются несколько токопроводящих слоев с собственным рисунком). Наибольшим спросом пользуются ОПП за счет простоты изготовления и широких возможностей применения. Реже применяется ДПП, так как их изготовление в разы дороже, а эффективность, по сравнению с ОПП, не такая высокая. МПП используют в дорогих и компатных устройствах, в быту и мелкосерийном производстве практически не используется.

Печатные платы: категории основы-диэлектрика

Все листовые материалы, из которых делают печатные платы, маркируются буквенно-числовым индексом FR (flame resistant, сопротивляемость к воспламенению). Цифры от 1 до 5, после букв, указывают на качество материала.

FR-1, FR-2, FR-3 — бумага, пропитанная эпоксидными спецсоставами. FR-4, FR-5 — стеклоткань и эпоксидный композит. На практике FR-1, в силу небольших эксплуатационных характеристик и боязни влажности, не используется. Однако, она крайне дешева, ее часто применяют при изготовление работающих прототипов печатных плат с небольшим жизненным циклом. FR-2 — недорогой, надежный и качественный диэлектрик, платы из этого материала получили широкое применение при изготовлении бытовой техники и крупносерийном производстве печатных плат. FR-4 используют при производстве промышленного оборудования и мелкосерийном (штучном) изготовлении ПП.

Печатные платы: методы изготовления

Принципиальные способы изготовления печатных плат можно разделить на два больших типа — аддитивные(от латинского additio -прибавление) и субтрактивные (от латинского subtratio -отнимание). В первом случае различными способами на основе будущей печатной платы формируются электроповодящий рисунок (чаще химическим способом) через специальную маску. Во втором случае — на пластину-диэлектрика наносится листовая фольга, затем, поверх формируется маска будущей схемы и с помощью различных способов (лазер, химическое травление, механическое удаления) удаляются ненужные участки фольги.

В промышленном производстве, обычно, используют комбинированные способы. Таким образом достигается минимизация себестоимости изготовления печатных плат. Также, с прогрессом в области использования лазерных технологий, все чаще начали использовать промышленные лазерные установки прототипирования.

Но, какая бы установка не была выбрана для организации собственного бизнеса, все они высокоавтоматизированы и участие человека в процессе изготовления печатных плат сводится к контролю параметров работы установки и своевременному их корректированию.

Постобработка одинакова для плат, произведенных любым способом — это электротест (проверка всех контактных площадок и рисунка на токопроводимость), нанесение паяльной маски и маркировки.

Для расширения бизнеса можно освоить шеф-монтаж компонентов на печатные платы и изготовление технической документации, что позволяет заказчикам получать полностью готовое изделие.

Открываем производство печатных плат: организация бизнеса, необходимое оборудование

Минимальная площадь для открытия производства или цеха по изготовлению печатных плат — 80 м², без учета складской площади. Большинству оборудования необходимо трехфазное электропитание 380В, а химическое оборудование, где происходит слив активных растворов, требует использование специальных канализационных стоков. Поэтому целесообразнее открывать подобное производство в промышленных кластерах или зонах.

Общий перечень требований к промышленному помещению:
  • Линии электропитания (220 и 380В),
  • Промышленная вытяжка,
  • Подача и развод сжатого воздуха,
  • Снабжение водой (общий водоотвод (городской), установка по деминерализации воды для приготовления активных растворов),
  • Канализационных сток для промышленных отходов.

Как правило, комплект промышленного оборудования, устроенный правильным образом с периодическим проведением технического обслуживания согласно регламенту, способен работать в две смены без сбоев ~10 лет.

Промышленное оборудование для производства печатных включает в себя:
  • Участок механической обработки . Установки нарезки, сверления, штифтования, фрезеры с ЧПУ. Подготовка листов диэлектрика.
  • Участок прессования. Изготовление фольгированного покрытия, прессование многослойных печатных плат.
  • Участок мокрых процессов. Изготовление и монтаж электроповодящих схем на листе диэлектрика. Установки для химической очистки, оксидирования, меднения, проявления, гальванизации и т.п.
  • Нанесение финишного покрытия . Предварительная и окончательная очистка плат (механический и ультразвуковой способ), лужение горячим способом и т.п.
  • Желтая комната. Экспонирование и ламинирование печатных плат.
  • Участок контроля качества .
  • Участок нанесения маркировки .

Минимальная стоимость организации подобного производства «под ключ» — от 350 тысяч рублей (начальное оборудование) до 30 миллионов рублей (многопрофильное оборудование). Также необходимо выделить 600 тысяч рублей на сырье для начального производства — основы плат, химические растворы, фольга, медь и прочее.

Выбор комплекта оборудования зависит от множества параметров самого производства, также от планируемого объема и удовлетворения спроса. Производство в небольших объемах требует недорогое оборудование, которое способно удовлетворить спрос на оперативное и краткосрочное исполнение простых заказов. Качество и точность плат, изготовленных на таком оборудование, удовлетворит простых или частных заказчиков, которым необходимо не более 500 плат в год.

Также существует возможность организовать предприятие, которое будет работать по схеме контрактного производства (массовое производство печатных плат для крупного заказчика с соблюдением технологического цикла и контроля качества со стороны заказчика). Конечно, подобное производство требует значительных капиталовложений, так как, участие бизнеса в этой нише требует яркого конкурентного отличия, в первую очередь от юго-восточного сектора рынка (Тайвань, Китай, Индия и т.п.), следовательно, оборудование должно быть дорогим и высококлассным. Профессионализм кадров в России, что также является конкретным преимуществом, гарантируется нам высокой степенью подготовки специалистов в местных ВУЗах радиоэлектроники. Следовательно, контрактное производство печатных плат, при наличии специалистов и хорошего оборудования, это не фантазия, а вполне готовый бизнес-план для подобного предприятия. Ведь мировой объем контрактного производства превышает 40 миллиардов долларов в год и явного региона-лидера в этой отрасли нет. Одинаково эффективно функционируют предприятия как в Китае, так и в Европе. Это связано не только с унификацией производства, но и качеством изготовления. Поэтому у российских предприятий, организуемых под контрактное производство, есть все шансы успешно влиться и функционировать в этой нише.

Персонал и прочие моменты данного бизнеса

Главное при организации подобного бизнеса — четкое знание и представление процессов. Без знаний участие в данном бизнесе возможно лишь в форме соинвестирования. И никакая статья с бизнес-идей не изменит ситуации. Поэтому предполагается, что организатор знает все особенности и тонкости, понимает какое оборудование ему необходимо, а также какие специалисты нужны на предприятии.

В цехе, специализирующемся на мелкосерийном производстве, будет достаточно 4 операторов-универсалов, следящих за изготовлением печатных плат. Также необходим специалист по контролю качества и начальник производства. Разнорабочие-грузчики, бухгалтера, маркетолог, секретарь и уборщицы могут быть привлечены по договору-подряду по мере необходимости.

Расширение бизнеса возможно за счет организации дочерних производств электроники и электронных устройств, где потребность в печатных платах будет удовлетворять основное производство.

Сегодня мы выступим в немного непривычном для себя амплуа, будем рассказывать не о гаджетах, а о технологиях, которые стоят за ними. Месяц назад мы были в Казани, где познакомились с ребятами из Навигатор-кампуса . Заодно побывали на расположенном близко (ну, относительно близко) заводе по производству печатных плат - Технотех . Этот пост - попытка разобраться в том, как же все-таки производят те самые печатные платы.


Итак, как же все-таки делают печатные платы для наших любимых гаджетов?

На заводе умеют делать платы от начала и до конца - проектирование платы по вашему ТЗ, изготовление стеклотекстолита, производство односторонних и двухсторонних печатных плат, производство многослойных печатных плат, маркировка, проверка, ручная и автоматическая сборка и пайка плат.
Для начала, я покажу, как делают двухсторонние платы. Их техпроцесс ничем не отличается от производства односторонних печатных плат, кроме того, что при изготовлении ОПП не производят операции на второй стороне.

О методах изготовления плат

Вообще, все методы изготовления печатных плат можно разделить на две большие категории: аддитивные(от латинского additio -прибавление) и субтрактивные (от латинского subtratio -отнимание). Примером субтрактивной технологии является всем известный ЛУТ(Лазерно-утюжная технология) и его вариации. В процессе создания печатной платы по этой технологии мы защищаем будущие дорожки на листе стеклотекстолита тонером от лазерного принтера, а затем стравливаем все ненужное в хлорном железе.
В аддитивных методах проводящие дорожки, наоборот, наносятся на поверхность диэлектрика тем или иным способом.
Полуаддитивные методы(иногда их еще называют комбинированными.) - нечто среднее между классическими аддитивными и субтрактивными. В процессе производства ПП по этому методу часть проводящего покрытия может стравливаться(иногда почти сразу после нанесения), но как правило это происходит быстрее/проще/дешевле, чем в субтрактивных методах. В большинстве случаев, это следствие того, что большая часть толщины дорожек наращивается гальваникой или химическими методами, а слой, который подвергается травлению - тонкий, и служит лишь в качестве проводящего покрытия для гальванического осаждения.
Я покажу именно комбинированный метод.

Изготовление двухслойных печатных плат по комбинированному позитивному методу(полуаддитивный метод)

Изготовление стеклотекстолита
Процесс начинается с изготовления фольгированного стеклотекстолита. Стеклотекстолит - это материал, состоящий из тонких листов стекловолокна(они похожи на плотную блестящую ткань), пропитанных эпоксидной смолой и спрессованных стопкой в лист.
Сами полотна стекловолокна тоже не слишком просты - это плетеные(как обычная ткань в вашей рубашке) тонкие-тонкие нити обычного стекла. Они настолько тонкие, что могут легко гнуться в любых направлениях. Выглядит это примерно вот так:

Увидеть ориентацию волокон можно на многострадальной картинке из википедии:


В центре платы, светлые участки - это волокна идут перпендикулярно срезу, участки чуть темнее - параллельно.
Или например на микрофотографии tiberius , насколько я помню из этой статьи:

Итак, начнем.
Стекловолоконное полотно поступает на производство вот в таких бобинах:


Оно уже пропитано частично отвержденной эпоксидной смолой - такой материал называется препрегом , от английского pre -impreg nated - предварительно пропитанный. Так как смола уже частично отверждена, она уже не такая липкая, как в жидком состоянии - листы можно брать руками, совсем не опасаясь испачкаться в смоле. Смола станет жидкой только при нагреве фольги, и то лишь на несколько минут, прежде чем застыть окончательно.
Нужное количество слоев вместе с медной фольгой собирается вот на этом аппарате:


А вот сам рулон фольги.


Далее полотно нарезается на части и поступает в пресс высотой в два человеческих роста:


На фото Владимир Потапенко, начальник производства.
Интересно реализована технология нагрева во время прессования: нагреваются не части пресса, а сама фольга. На обе стороны листа подается ток, который за счет сопротивления фольги нагревает лист будущего стеклотекстолита. Прессование происходит при сильно пониженном давлении, для исключения появления воздушных пузырей внутри текстолита


При прессовании, за счет нагрева и давления, смола размягчается, заполняет пустоты и после полимеризации получается единый лист.
Вот такой:


Он нарезается на заготовки для плат специальным станком:


Технотех использует два вида заготовок: 305х450 - маленькая групповая заготовка, 457х610 - большая заготовка
После этого к каждому комплекту заготовок распечатывается маршрутная карта, и путешествие начинается…


Маршрутная карта - это вот такая бумажка с перечнем операций, информацией о плате и штрих-кодом. Для контроля выполнения операций используется 1С 8, в которую внесена вся информация о заказах, о техпроцессе и так далее. После выполнения очередного этапа производства сканируется штрихкод на маршрутном листе и заносится в базу.

Сверловка заготовок
Первый этап производства однослойных и двухслойных печатных плат - сверление отверстий. С многослойными платами все сложнее, и я расскажу об этом позже. Заготовки с маршрутными листами поступают на участок сверловки:


Из заготовок собирается пакет для сверловки. Он состоит из подложки(материал типа фанеры), от одной до трех одинаковых заготовок печатных плат и алюминиевой фольги. Фольга нужна для определения касания сверла поверхности заготовки - так станок определяет поломку сверла. Еще при каждом захвате сверла он контролирует его длину и заточку лазером.


После сборки пакета он закладывается вот в этот станок:


Он такой длинный, что мне пришлось сшивать эту фотку из нескольких кадров. Это швейцарский станок фирмы Posalux, точной модели, к сожалению не знаю. По характеристикам он близок вот к этому . Он ест трехразовое трехфазное питание напряжением 400В, и потребляет при работе 20 КВт. Вес станка около 8 тонн. Он может одновременно обрабатывать четыре пакета по разным программам, что в сумме дает 12 плат за цикл(естественно, что все заготовки в одном пакете будут просверлены одинаково). Цикл сверления - от 5 минут до нескольких часов, в зависимости от сложности и количества отверстий. Среднее время - около 20 минут. Всего таких станков у технотеха три штуки.


Программа разрабатывается отдельно, и подгружается по сети. Все что надо сделать оператору - отсканировать штрихкод партии и заложить пакет из заготовок внутрь. Емкость инструментального магазина: 6000 сверл или фрез.


Рядом стоит большой шкаф со сверлами, но оператору нет необходимости контролировать заточку каждого сверла и менять его - станок все время знает степень износа сверл - записывает себе в память сколько отверстий было просверлено каждым сверлом. При исчерпании ресурса сам меняет сверло на новое, старые сверла останется выгрузить из контейнера и отправить на повторную заточку.


Вот так выглядят внутренности станка:


После сверловки в маршрутном листе и базе делается отметка, а плата отправляется по этапу на следующий этап.

Очистка, активация заготовок и химическое меднение.
Хоть станок и пользуется своими «пылесосом» во время и после сверловки, поверхность платы и отверстий все равно надо очистить от загрязнений и подготовить к следующей технологической операции. Для начала, плата просто очищается в моющем растворе механическими абразивами


Надписи, слева направо: «Камера зачистки щетками верх/низ», «Камера промывки», «Нейтральная зона».
Плата становится чистой и блестящей:


После этого в похожей установке проводится процесс активации поверхности. Для каждой поверхности вводится серийный номер Активация поверхности - это подготовка к осаждению меди на внутреннюю поверхность отверстий для создания переходных отверстий между слоями платы. Медь не может осесть на неподготовленную поверхность, поэтому плату обрабатывают специальными катализаторами на основе палладия. Палладий, в отличии от меди, легко осаждается на любую поверхность, и в дальнейшем служит центрами кристаллизации для меди. Установка активации:

После этого, последовательно проходя несколько ванн в еще одной похожей установке заготовка обзаводится тонким(меньше микрона) слоем меди в отверстиях.


Дальше этот слой гальваникой наращивается до 3-5 микрон - это улучшает стойкость слоя к окислению и повреждениям.

Нанесение и экспонирование фоторезиста, удаление незасвеченных участков.
Дальше плата отправляется в участок нанесения фоторезиста. Нас туда не пустили, потому что он закрыт, и вообще, там чистая комната, поэтому ограничимся фотографиями через стекло. Нечто подобное я видел в Half-Life(я про трубы, спускающиеся с потолка):


Собственно вот зеленая пленка на барабане - это и есть фоторезист.


Далее, слева направо(на первой фотографии): две установки нанесения фоторезиста, дальше автоматическая и ручная рамы для засветки по заранее подготовленным фотошаблонам. В автоматической раме присутствует контроль, который учитывает допуск по совмещению с реперными точками и отверстиями. В ручной рамке маска и плата совмещаются руками. На этих же рамах экспонируется шелкография и паяльная маска. Дальше - установка проявки и отмывки плат, но так как мы туда не попали, фотографий этой части у меня нет. Но там ничего интересного - примерно такой же конвейер как в «активации», где заготовка проходит последовательно несколько ванн с разными растворами.
А на переднем плане - огромный принтер, который эти самые фотошаблоны печатает:


Вот плата с нанесенным, экспонированным и проявленным:


Обратите внимание, фоторезист нанесен на места, на которых в дальнейшем не будет меди - маска негативная, а не позитивная, как в в ЛУТ-е или домашнем фоторезисте. Это потому, что в дальнейшем наращивание будет происходить в местах будущих дорожек.


Это тоже позитивная маска:


Все эти операции происходят при неактиничном освещении, спектр которого подобран таким образом, чтобы одновременно не оказывать влияния на фоторезист и давать максимальную освещенность для работы человека в данном помещении.
Люблю объявления, смысл которых я не понимаю:

Гальваническая металлизация
Теперь настал через ее величества - гальванической металлизации. На самом деле, ее уже проводили на прошлом этапе, когда наращивали тонкий слой химической меди. Но теперь слой будет наращён еще больше - с 3 микрон до 25. Это уже тот слой, который проводит основной ток в переходных отверстиях. Делается это вот в таких ваннах:


В которых циркулируют сложные составы электролитов:


А специальный робот, повинуясь заложенной программе, таскает платы из одной ванны в другую:


Один цикл меднения занимает 1 час 40 минут. В одной паллете могут обрабатываться 4 заготовки, но в ванне таких паллет может быть несколько.
Осаждение металлорезиста
Следующая операция представляет собой еще одну гальваническую металлизацию, только теперь осаждаемый материал не медь, а ПОС - припой свинец-олово. А само покрытие, по аналогии с фоторезистом называется металлорезистом. Платы устанавливаются в раму:


Эта рама проходит несколько уже знакомых нам гальванических ванн:


И покрывается белым слоем ПОС-а. На заднем плане видна другая плата, еще не обработанная:

Удаление фоторезиста, травление меди, удаление металлорезиста


Теперь с плат смывается фоторезист, он выполнил свою функцию. Теперь на все еще медной плате остались дорожки, покрытые металлорезистом. На этой установке происходит травление в хитром растворе, который травит медь, но не трогает металлорезист. Насколько я запомнил, он состоит из углекислого аммония, хлористого аммония и гидрооксида аммония. После травления платы выглядят вот так:


Дорожки на плате - это «бутерброд» из нижнего слоя меди и верхнего слоя гальванического ПОС-а. Теперь, другим еще более хитрым раствором проводится другая операция - слой ПОС-а убирается, не затрагивая слой меди.


Правда, иногда ПОС не убирается, а оплавляется в специальных печах. Или плата проходит горячее лужение(HASL-процесс) - когда она опускается в большую ванну с припоем. Сначала она покрывается канифольным флюсом:


И устанавливается вот в такой автомат:


Он опускает плату в ванну с припоем и тут же вытаскивает ее обратно. Потоки воздуха сдувают лишний припой, оставляя лишь тонкий слой на плате. Плата получается вот такая:


Но на самом деле метод немного «варварский» и не очень действует на платы, особенно многослойные - при погружении в расплав припоя плата переносит температурный шок, что не очень хорошо действует на внутренние элементы многослойных плат и тонкие дорожки одно- и двухслойных.
Гораздо лучше покрывать иммерсионным золотом или серебром. Вот очень хорошая информация о иммерсионных покрытиях, если кому интересно.
Мы не побывали на участке иммерсионных покрытий, по банальной причине - он был закрыт, а за ключом было идти лень. А жаль.
Электротест
Дальше почти готовые платы отправляются на визуальный контроль и электротест. Электротест - это когда проверяются соединения всех контактных площадок между собой, нет ли где обрывов. Выглядит это очень забавно - станок держит плату и быстро-быстро тыкает в нее щупами. Видео этого процесса можно посмотреть у меня в инстаграме (кстати, подписаться можно там же). А в виде фото это выглядит вот так:


Та большая машина слева - и есть электротест. А вот и сами щупы ближе:


На видео, правда, была другая машинка - с 4 щупами, а тут их 16. Говорят, гораздо быстрее всех трех старых машинок с четырьмя щупами вместе взятых.
Нанесение паяльной маски и покрытие контактных площадок
Следующий технологический процесс - нанесение паяльной маски. То самое зеленое(ну, чаще всего зеленое. А вообще оно бывает очень разных цветов) покрытие, которое мы видим на поверхности плат. Подготовленные платы:


Закладываются вот в такой автомат:


Который через тонкую сеточку размазывает полужидкую маску по поверхности платы:


Видео нанесения, кстати, тоже можно посмотреть в инстаграме (и подписаться тоже:)
После этого, платы сушатся, пока маска перестанет липнуть, и экспонируются в той же желтой комнате, что мы видели выше. После этого, неэкспонированная маска смывается, обнажая контактные пятачки:


Потом их покрывают финишным покрытием - горячим лужением или иммерсионным нанесением:


И наносят маркировку - шелкографию. Это белые(чаще всего) буковки, которые показывают, где какой разъем и какой элемент тут стоит.
Она может наносится по двум технологиям. В первом случае все происходит так же, как и с паяльной маской, отличается лишь цвет состава. Она закрывает всю поверхность платы, потом экспонируется, и неотвержденные ультрафиолетом участки смываются. Во втором случает ее наносит специальный принтер, печатающий хитрым эпоксидным составом:


Это и дешевле, и гораздо быстрее. Военные, кстати, не жалуют этот принтер, и постоянно указывают в требованиях к своим платам, что маркировка наносится только фотополимером, что очень огорчает главного технолога.

Изготовление многослойных печатных плат по методу металлизации сквозных отверстий:

Все, что я описал выше - касается только односторонних и двухсторонних печатных плат(на заводе их, кстати, никто так не называет, все говорят ОПП и ДПП). Многослойные платы(МПП) делаются на этом же оборудовании, но немного по другой технологии.
Изготовление ядер
Ядро - это внутренний слой тонкого текстолита с медными проводниками на нем. Таких ядер в плате может быть от 1(плюс две стороны - трехслойная плата) до 20. Одно из ядер называется золотым - это означает, что оно используется в качестве реперного - того слоя, по которому выставляются все остальные. Ядра выглядят вот так:


Изготавливаются они точно так же, как и обычные платы, только толщина стеклотекстолита очень мала - обычно 0,5мм. Лист получается такой тонкий, то его можно изгибать, как плотную бумагу. На его поверхность наносится медная фольга, и дальше происходят все обычные стадии - нанесение, экспонирование фоторезиста и травление. Итогом этого являются вот такие листы:


После изготовления дорожки проверяются на целостность на станке, который сравнивает рисунок платы на просвет с фотошаблоном. Кроме этого, существует еще и визуальный контроль. Причем реально визуальный - сидят люди и смотрят в заготовки:


Иногда какая-то из стадий контроля выносит вердикт о плохом качестве одной из заготовок(черные крестики):


Этот лист плат, в которой случился дефект все равно изготовится полностью, но после нарезки бракованная плата пойдет в мусор. После того, как все слои изготовлены и проверены, наступает черед следующей технологической операции.
Сборка ядер в пакет и прессование
Это происходит в зале под названием «Участок прессования»:


Ядра для платы выкладываются вот в такую стопочку:


А рядом кладется карта расположения слоев:


После чего в дело вступает полуавтоматическая машина прессования плат. Полуавтоматичность ее заключается в том, что оператор должен по ее команде подавать ей ядра в определенном порядке.


Перекладывая их для изоляции и склеивания листами препрега:


А дальше начинается магия. Автомат захватывает и переносит листы в рабочее поле:


А затем совмещает их по реперным отверстиям относительно золотого слоя.


Дальше заготовка поступает в горячий пресс, а после прогрева и полимеризации слоев - в холодный. После этого мы получаем такой же лист стеклотекстолита, который ничем не отличается от заготовок для двухслойных печатных плат. Но внутри у него доброе сердце несколько ядер со сформированными дорожками, которые, правда, еще никак не связаны между собой и разделены изолирующими слоями полимеризированного препрега. Дальше процесс проходит те же стадии, что я уже описывал ранее. Правда, за небольшим различием.
Сверловка заготовок
При сборке пакета ОПП и ДПП для сверловки его не нужно центровать, и его можно собирать с некоторым допуском - все равно это первая технологическая операция, и все остальные будут ориентироваться на нее. А вот при сборке пакета многослойных печатных плат очень важно привязаться к внутренним слоям - при сверловке отверстие должно пройти насквозь все внутренние контакты ядер, соединив их в экстазе при металлизации. Поэтому пакет собирается вот на такой машинке:


Это рентгеновский сверлильный станок, который видит сквозь текстолит внутренние металлически реперные метки и по их расположению сверлит базовые отверстия, в которые вставляются крепежи для установки пакета в сверлильный станок.

Металлизация
Дальше все просто - заготовки сверлятся, очищаются, активируются и металлизируются. Металлизация отверстия связывает между собой все медные пяточки внутри печатной платы:


Таким образом, завершая электронную схему внутренностей печатной платы.
Проверка и шлифы
Дальше от каждой платы отрезается кусочек, который шлифуется и рассматривается в микроскоп, для того, чтобы удостовериться, что все отверстия получились нормально.


Эти кусочки называются шлифы - поперечно срезанные части печатной платы, которые позволяет оценить качество платы в целом и толщину медного слоя в центральных слоях и переходных отверстиях. В данном случае, под шлиф пускают не отдельную плату, а специально сделанные с краю платы весь набор диаметров переходных отверстий, которые используются в заказе. Шлиф, залитый в прозрачный пластик выглядит вот так:

Фрезеровка или скрайбирование
Далее платы, которые находятся на групповой заготовке необходимо разделить на несколько частей. Делается это либо на фрезерном станке:


Который фрезой вырезает нужный контур. Другой вариант - скрайбирование, это когда контур платы не вырезается, а надрезается круглым ножом. Это быстрее и дешевле, но позволяет делать только прямоугольные платы, без сложных контуров и внутренних вырезов. Вот скрайбированная плата:

А вот фрезерованная:


Если заказывалось только изготовление плат, то на этом все заканчивается - платы складывают в стопочку:


Оборачивается все тем же маршрутным листом:


И ждет отправки.
А если нужна сборка и запайка, то впереди есть еще кое-что интересное.
Сборка


Дальше плата, если это необходимо поступает на участок сборки, где на нее напаиваются нужные компоненты. Если мы говорим о ручной сборке - то все понятно, сидят люди(кстати, в большинстве своем женщины, когда я к ним зашел, у меня уши в трубочку свернулись от песни из магнитофона «Боже, какой мужчина»):


И собирают, собирают:


А вот если говорить о автоматической сборке, то там все гораздо интереснее. Происходит это вот на такой длинной 10-метровой установке, которая делает все - от нанесения паяльной пасты до пайки по термопрофилям.


Кстати, все серьёзно. Там заземлены даже коврики:


Как я говорил, начинается все с того, что на неразрезанный лист с печатными платами устанавливают вместе с металлическим шаблоном в начало станка. На шаблон густо намазывается паяльная паста, и ракельный нож проходя сверху оставляет точно отмерянные количества пасты в углублениях шаблона.


Шаблон поднимается, и паяльная паста оказывается в нужных местах на плате. Кассеты с компонентами устанавливаются в отсеки:


Каждый компонент заводится в соответствующую ему кассету:


Компьютеру, управляющему станком, говорится где какой компонент находится:


И он начинает расставлять компоненты на плате.


Выглядит это вот так(видео не мое). Можно смотреть вечно:

Аппарат установки компонентов называется Yamaha YS100 и способен устанавливать 25000 компонентов в час(на один тратится 0.14 секунды).
Дальше плата проходит горячую и холодные зоны печки(холодная - это значит «всего» 140°С, по сравнению с 300°С в горячей части). Побыв строго определенное время в каждой зоне со строго определенной температурой, паяльная паста плавится, образуя одно целое с ножками элементов и печатной платой:


Запаянный лист плат выглядит вот так:


Все. Плата разрезается, если нужно и упаковывается, чтобы вскоре уехать к заказчику:

Примеры

Напоследок, примеры того, что технотех может делать. Например, конструирование и изготовление многослойных плат(до 20 слоев), включая платы для BGA компонентов и HDI платы:


C со всеми «номерными» военными приемками(да, на каждой плате вручную ставится номер и дата изготовления - этого требуют военные):


Проектирование, изготовления и сборка плат практически любой сложности, из своих или из компонентов заказчика:


И ВЧ, СВЧ, платы с металлизированным торцом и металлическим основанием(фотографий этого я не сделал, к сожалению).
Конечно, они не конкурент резониту в плане быстрых прототипов плат, но если у вас от 5 штук, рекомендую запросить у них стоимость изготовления - они очень хотят работать с гражданскими заказами.

И все-таки, в России производство еще есть. Что бы там не говорили.

Напоследок можно отдышаться, поднять глаза на потолок и попытаться разобраться в хитросплетениях труб:

Производство печатных плат – это процесс, без которого невозможно функционирование оборудования, поскольку печатные платы – это и есть «начинка» любого оборудования, которое работает с использованием электричества.

Надо ли говорить, насколько важно качество печатных плат? При выходе их из строя перестаёт функционировать оборудование. Кроме того, необходимо, чтобы печатные платы выполняли все свои функции – то есть электрического и механического соединения различных частей аппаратуры.

Услуга по созданию печатных плат на заказ требует от компании-исполнителя не только соответствующего оборудования, но и наличия опытных инженеров. НИЦЭВТ может похвастаться и своим персоналом и оборудованием.

Почему изготовление печатных плат на заказ в Москве лучше доверить НИЦЭВТ?

  • В 2006-2007 годах НИЦЭВТ, который и раньше был предприятием стратегического назначения, подвергся модернизации. Теперь печатные платы, которые выпускает предприятие, полностью соответствуют мировым стандартам, в том числе в области военной техники. Технологические процессы были автоматизированы, таким образом, человеческий фактор оказался сведён к минимуму. Эти меры позволили запустить процесс высокотехнологичного производства печатных плат.
  • В НИЦЭВТ собраны выдающиеся учёные, которые занимаются и куда более сложными процессами, чем разработка печатных плат. Например, проектирование, производство и тестирование суперкомпьютеров, а также программного обеспечения для их работы. Это значит, что принимая решение заказать печатные платы в НИЦЭВТ, можно быть уверенным в том, что инженеры и математики найдёт самое хорошее решение для каждого конкретного случая.
  • Техническое обеспечение НИЦЭВТ находится на самом высоком уровне. В стратегическом предприятии, которое занимается производством суперкомпьютеров, и не может быть иначе. Заготовительный участок, участок фотошаблонов, установка для фоторезиста и маски, линия химической подготовки слоёв, устройства для сборки пакета и прессования, участки гальваники и мокрых процессов, вертикальная установка для нанесения жидкой паяльной маски, участок золочения – всё это оборудование для изготовления печатных плат позволяет выполнять работу на высшем профессиональном уровне.

Производство печатных плат – трудоёмкий и наукоёмкий процесс, который подразумевает ряд последовательных действий. Все эти действия важны, а пренебрежение ими грозит тем, что произведённые платы будут некачественными.

Каждый серьёзный производитель печатных плат должен обладать всеми перечисленными выше техническими установками для того, чтобы выдавать качественный продукт, который не выйдет из строя в ответственный момент.

Возможно, у вас остались вопросы. Вы можете позвонить в НИЦЭВТ и задать их. Решение заказать и купить партию печатных плат – это серьёзная инвестиция, и мы готовы дать вам всю необходимую информацию, чтобы вы могли принять взвешенное решение.


Технологические возможности производства

Параметр Standart Special
Базовый материал FR4 High Tg, СВЧ,
отечественные материалы
Количество слоев 1...20 более 20
Толщина платы, мм 1...3,5 0,15...7,5
Максимальный размер платы, мм
(рабочее поле заготовки)
440 х 350 600 х 500
Минимальная ширина
проводника и зазора, мм
0,125 0,075
Толщина фольги слоев, мкм 18, 35 9, 50, 70, 105, 200
Материал и толщина теплоотвода

фольга
100 мкм, 200 мкм

алюминий
1...3 мм

Минимальное
металлизированное отверстие, мм
0,25 0,15
Защитная паяльная маска жидкая сухая
Финишное покрытие HASL,
иммерсионное золото,
золочение разъемов
иммерсионное олово,
золочение под «сварку»
Обработка контура фрезерование скрайбирование
Контроль AOI, E-test,
сопротивление изоляции,
сопротивление металлизации
Контроль волновых и
дифференциальных
сопротивлений

Технологические характеристики печатных плат

Параметр

Эскиз

Standart

Минимальный проводник на внешнем слое (толщина фольги)

0,125 мм (9 мкм)
0,150 мм (18 мкм)
0,175 мм (35 мкм)

0,075 мм (9 мкм)
0,100 мм (18 мкм)
0,125 мм (35 мкм)

Минимальный зазор на внешнем слое (толщина фольги)

0,125 мм (9 мкм)
0,150 мм (18 мкм)
0,175 мм (35 мкм)
0,075 мм (9 мкм)
0,100 мм (18 мкм)
0,125 мм (35 мкм)

Минимальный проводник на внутреннем слое (толщина фольги)

0,125 мм (18 мкм)
0,150 мм (35 мкм)
0,075 мм (18 мкм)
0,100 мм (35 мкм)

Минимальный зазор на внутреннем слое (толщина фольги)

0,125 мм (18 мкм)
0,150 мм (35 мкм)
0,075 мм (18 мкм)
0,100 мм (35 мкм)

Минимальный диаметр металлизированного отверстия

0,250 мм 0,150 мм

Минимальный диаметр неметаллизированного отверстия

0,300 мм 0,250 мм

Минимальный гарантийный поясок для наружных слоёв (D-d)

0,125 мм 0,075 мм

Минимальный гарантийный поясок для внутренних слоёв (D-d)

0,175 мм 0,125 мм

Минимальное освобождение на внутренних слоях

vvzvlad 25 марта 2014 в 05:11

Как делают печатные платы: экскурсия на завод Технотех

  • Блог компании Madrobots

Сегодня мы выступим в немного непривычном для себя амплуа, будем рассказывать не о гаджетах, а о технологиях, которые стоят за ними. Месяц назад мы были в Казани, где познакомились с ребятами из . Заодно побывали на расположенном близко (ну, относительно близко) заводе по производству печатных плат - Технотех . Этот пост - попытка разобраться в том, как же все-таки производят те самые печатные платы.


Итак, как же все-таки делают печатные платы для наших любимых гаджетов?

На заводе умеют делать платы от начала и до конца - проектирование платы по вашему ТЗ, изготовление стеклотекстолита, производство односторонних и двухсторонних печатных плат, производство многослойных печатных плат, маркировка, проверка, ручная и автоматическая сборка и пайка плат.
Для начала, я покажу, как делают двухсторонние платы. Их техпроцесс ничем не отличается от производства односторонних печатных плат, кроме того, что при изготовлении ОПП не производят операции на второй стороне.

О методах изготовления плат

Вообще, все методы изготовления печатных плат можно разделить на две большие категории: аддитивные(от латинского additio -прибавление) и субтрактивные (от латинского subtratio -отнимание). Примером субтрактивной технологии является всем известный ЛУТ(Лазерно-утюжная технология) и его вариации. В процессе создания печатной платы по этой технологии мы защищаем будущие дорожки на листе стеклотекстолита тонером от лазерного принтера, а затем стравливаем все ненужное в хлорном железе.
В аддитивных методах проводящие дорожки, наоборот, наносятся на поверхность диэлектрика тем или иным способом.
Полуаддитивные методы(иногда их еще называют комбинированными.) - нечто среднее между классическими аддитивными и субтрактивными. В процессе производства ПП по этому методу часть проводящего покрытия может стравливаться(иногда почти сразу после нанесения), но как правило это происходит быстрее/проще/дешевле, чем в субтрактивных методах. В большинстве случаев, это следствие того, что большая часть толщины дорожек наращивается гальваникой или химическими методами, а слой, который подвергается травлению - тонкий, и служит лишь в качестве проводящего покрытия для гальванического осаждения.
Я покажу именно комбинированный метод.

Изготовление двухслойных печатных плат по комбинированному позитивному методу(полуаддитивный метод)

Изготовление стеклотекстолита
Процесс начинается с изготовления фольгированного стеклотекстолита. Стеклотекстолит - это материал, состоящий из тонких листов стекловолокна(они похожи на плотную блестящую ткань), пропитанных эпоксидной смолой и спрессованных стопкой в лист.
Сами полотна стекловолокна тоже не слишком просты - это плетеные(как обычная ткань в вашей рубашке) тонкие-тонкие нити обычного стекла. Они настолько тонкие, что могут легко гнуться в любых направлениях. Выглядит это примерно вот так:

Увидеть ориентацию волокон можно на многострадальной картинке из википедии:


В центре платы, светлые участки - это волокна идут перпендикулярно срезу, участки чуть темнее - параллельно.
Или например на микрофотографии , насколько я помню из статьи:

Итак, начнем.
Стекловолоконное полотно поступает на производство вот в таких бобинах:


Оно уже пропитано частично отвержденной эпоксидной смолой - такой материал называется препрегом , от английского pre -impreg nated - предварительно пропитанный. Так как смола уже частично отверждена, она уже не такая липкая, как в жидком состоянии - листы можно брать руками, совсем не опасаясь испачкаться в смоле. Смола станет жидкой только при нагреве фольги, и то лишь на несколько минут, прежде чем застыть окончательно.
Нужное количество слоев вместе с медной фольгой собирается вот на этом аппарате:


А вот сам рулон фольги.


Далее полотно нарезается на части и поступает в пресс высотой в два человеческих роста:


На фото Владимир Потапенко, начальник производства.
Интересно реализована технология нагрева во время прессования: нагреваются не части пресса, а сама фольга. На обе стороны листа подается ток, который за счет сопротивления фольги нагревает лист будущего стеклотекстолита. Прессование происходит при сильно пониженном давлении, для исключения появления воздушных пузырей внутри текстолита


При прессовании, за счет нагрева и давления, смола размягчается, заполняет пустоты и после полимеризации получается единый лист.
Вот такой:


Он нарезается на заготовки для плат специальным станком:


Технотех использует два вида заготовок: 305х450 - маленькая групповая заготовка, 457х610 - большая заготовка
После этого к каждому комплекту заготовок распечатывается маршрутная карта, и путешествие начинается…


Маршрутная карта - это вот такая бумажка с перечнем операций, информацией о плате и штрих-кодом. Для контроля выполнения операций используется 1С 8, в которую внесена вся информация о заказах, о техпроцессе и так далее. После выполнения очередного этапа производства сканируется штрихкод на маршрутном листе и заносится в базу.

Сверловка заготовок
Первый этап производства однослойных и двухслойных печатных плат - сверление отверстий. С многослойными платами все сложнее, и я расскажу об этом позже. Заготовки с маршрутными листами поступают на участок сверловки:


Из заготовок собирается пакет для сверловки. Он состоит из подложки(материал типа фанеры), от одной до трех одинаковых заготовок печатных плат и алюминиевой фольги. Фольга нужна для определения касания сверла поверхности заготовки - так станок определяет поломку сверла. Еще при каждом захвате сверла он контролирует его длину и заточку лазером.


После сборки пакета он закладывается вот в этот станок:


Он такой длинный, что мне пришлось сшивать эту фотку из нескольких кадров. Это швейцарский станок фирмы Posalux, точной модели, к сожалению не знаю. По характеристикам он близок вот к этому . Он ест трехразовое трехфазное питание напряжением 400В, и потребляет при работе 20 КВт. Вес станка около 8 тонн. Он может одновременно обрабатывать четыре пакета по разным программам, что в сумме дает 12 плат за цикл(естественно, что все заготовки в одном пакете будут просверлены одинаково). Цикл сверления - от 5 минут до нескольких часов, в зависимости от сложности и количества отверстий. Среднее время - около 20 минут. Всего таких станков у технотеха три штуки.


Программа разрабатывается отдельно, и подгружается по сети. Все что надо сделать оператору - отсканировать штрихкод партии и заложить пакет из заготовок внутрь. Емкость инструментального магазина: 6000 сверл или фрез.


Рядом стоит большой шкаф со сверлами, но оператору нет необходимости контролировать заточку каждого сверла и менять его - станок все время знает степень износа сверл - записывает себе в память сколько отверстий было просверлено каждым сверлом. При исчерпании ресурса сам меняет сверло на новое, старые сверла останется выгрузить из контейнера и отправить на повторную заточку.


Вот так выглядят внутренности станка:


После сверловки в маршрутном листе и базе делается отметка, а плата отправляется по этапу на следующий этап.

Очистка, активация заготовок и химическое меднение.
Хоть станок и пользуется своими «пылесосом» во время и после сверловки, поверхность платы и отверстий все равно надо очистить от загрязнений и подготовить к следующей технологической операции. Для начала, плата просто очищается в моющем растворе механическими абразивами


Надписи, слева направо: «Камера зачистки щетками верх/низ», «Камера промывки», «Нейтральная зона».
Плата становится чистой и блестящей:


После этого в похожей установке проводится процесс активации поверхности. Для каждой поверхности вводится серийный номер Активация поверхности - это подготовка к осаждению меди на внутреннюю поверхность отверстий для создания переходных отверстий между слоями платы. Медь не может осесть на неподготовленную поверхность, поэтому плату обрабатывают специальными катализаторами на основе палладия. Палладий, в отличии от меди, легко осаждается на любую поверхность, и в дальнейшем служит центрами кристаллизации для меди. Установка активации:

После этого, последовательно проходя несколько ванн в еще одной похожей установке заготовка обзаводится тонким(меньше микрона) слоем меди в отверстиях.


Дальше этот слой гальваникой наращивается до 3-5 микрон - это улучшает стойкость слоя к окислению и повреждениям.

Нанесение и экспонирование фоторезиста, удаление незасвеченных участков.
Дальше плата отправляется в участок нанесения фоторезиста. Нас туда не пустили, потому что он закрыт, и вообще, там чистая комната, поэтому ограничимся фотографиями через стекло. Нечто подобное я видел в Half-Life(я про трубы, спускающиеся с потолка):


Собственно вот зеленая пленка на барабане - это и есть фоторезист.


Далее, слева направо(на первой фотографии): две установки нанесения фоторезиста, дальше автоматическая и ручная рамы для засветки по заранее подготовленным фотошаблонам. В автоматической раме присутствует контроль, который учитывает допуск по совмещению с реперными точками и отверстиями. В ручной рамке маска и плата совмещаются руками. На этих же рамах экспонируется шелкография и паяльная маска. Дальше - установка проявки и отмывки плат, но так как мы туда не попали, фотографий этой части у меня нет. Но там ничего интересного - примерно такой же конвейер как в «активации», где заготовка проходит последовательно несколько ванн с разными растворами.
А на переднем плане - огромный принтер, который эти самые фотошаблоны печатает:


Вот плата с нанесенным, экспонированным и проявленным:


Обратите внимание, фоторезист нанесен на места, на которых в дальнейшем не будет меди - маска негативная, а не позитивная, как в в ЛУТ-е или домашнем фоторезисте. Это потому, что в дальнейшем наращивание будет происходить в местах будущих дорожек.


Это тоже позитивная маска:


Все эти операции происходят при неактиничном освещении, спектр которого подобран таким образом, чтобы одновременно не оказывать влияния на фоторезист и давать максимальную освещенность для работы человека в данном помещении.
Люблю объявления, смысл которых я не понимаю:

Гальваническая металлизация
Теперь настал через ее величества - гальванической металлизации. На самом деле, ее уже проводили на прошлом этапе, когда наращивали тонкий слой химической меди. Но теперь слой будет наращён еще больше - с 3 микрон до 25. Это уже тот слой, который проводит основной ток в переходных отверстиях. Делается это вот в таких ваннах:


В которых циркулируют сложные составы электролитов:


А специальный робот, повинуясь заложенной программе, таскает платы из одной ванны в другую:


Один цикл меднения занимает 1 час 40 минут. В одной паллете могут обрабатываться 4 заготовки, но в ванне таких паллет может быть несколько.
Осаждение металлорезиста
Следующая операция представляет собой еще одну гальваническую металлизацию, только теперь осаждаемый материал не медь, а ПОС - припой свинец-олово. А само покрытие, по аналогии с фоторезистом называется металлорезистом. Платы устанавливаются в раму:


Эта рама проходит несколько уже знакомых нам гальванических ванн:


И покрывается белым слоем ПОС-а. На заднем плане видна другая плата, еще не обработанная:

Удаление фоторезиста, травление меди, удаление металлорезиста


Теперь с плат смывается фоторезист, он выполнил свою функцию. Теперь на все еще медной плате остались дорожки, покрытые металлорезистом. На этой установке происходит травление в хитром растворе, который травит медь, но не трогает металлорезист. Насколько я запомнил, он состоит из углекислого аммония, хлористого аммония и гидрооксида аммония. После травления платы выглядят вот так:


Дорожки на плате - это «бутерброд» из нижнего слоя меди и верхнего слоя гальванического ПОС-а. Теперь, другим еще более хитрым раствором проводится другая операция - слой ПОС-а убирается, не затрагивая слой меди.


Правда, иногда ПОС не убирается, а оплавляется в специальных печах. Или плата проходит горячее лужение(HASL-процесс) - когда она опускается в большую ванну с припоем. Сначала она покрывается канифольным флюсом:


И устанавливается вот в такой автомат:


Он опускает плату в ванну с припоем и тут же вытаскивает ее обратно. Потоки воздуха сдувают лишний припой, оставляя лишь тонкий слой на плате. Плата получается вот такая:


Но на самом деле метод немного «варварский» и не очень действует на платы, особенно многослойные - при погружении в расплав припоя плата переносит температурный шок, что не очень хорошо действует на внутренние элементы многослойных плат и тонкие дорожки одно- и двухслойных.
Гораздо лучше покрывать иммерсионным золотом или серебром. Вот очень хорошая информация о иммерсионных покрытиях, если кому интересно.
Мы не побывали на участке иммерсионных покрытий, по банальной причине - он был закрыт, а за ключом было идти лень. А жаль.
Электротест
Дальше почти готовые платы отправляются на визуальный контроль и электротест. Электротест - это когда проверяются соединения всех контактных площадок между собой, нет ли где обрывов. Выглядит это очень забавно - станок держит плату и быстро-быстро тыкает в нее щупами. Видео этого процесса можно посмотреть у меня в инстаграме (кстати, подписаться можно там же). А в виде фото это выглядит вот так:


Та большая машина слева - и есть электротест. А вот и сами щупы ближе:


На видео, правда, была другая машинка - с 4 щупами, а тут их 16. Говорят, гораздо быстрее всех трех старых машинок с четырьмя щупами вместе взятых.
Нанесение паяльной маски и покрытие контактных площадок
Следующий технологический процесс - нанесение паяльной маски. То самое зеленое(ну, чаще всего зеленое. А вообще оно бывает очень разных цветов) покрытие, которое мы видим на поверхности плат. Подготовленные платы:


Закладываются вот в такой автомат:


Который через тонкую сеточку размазывает полужидкую маску по поверхности платы:


Видео нанесения, кстати, тоже можно посмотреть в инстаграме (и подписаться тоже:)
После этого, платы сушатся, пока маска перестанет липнуть, и экспонируются в той же желтой комнате, что мы видели выше. После этого, неэкспонированная маска смывается, обнажая контактные пятачки:


Потом их покрывают финишным покрытием - горячим лужением или иммерсионным нанесением:


И наносят маркировку - шелкографию. Это белые(чаще всего) буковки, которые показывают, где какой разъем и какой элемент тут стоит.
Она может наносится по двум технологиям. В первом случае все происходит так же, как и с паяльной маской, отличается лишь цвет состава. Она закрывает всю поверхность платы, потом экспонируется, и неотвержденные ультрафиолетом участки смываются. Во втором случает ее наносит специальный принтер, печатающий хитрым эпоксидным составом:


Это и дешевле, и гораздо быстрее. Военные, кстати, не жалуют этот принтер, и постоянно указывают в требованиях к своим платам, что маркировка наносится только фотополимером, что очень огорчает главного технолога.

Изготовление многослойных печатных плат по методу металлизации сквозных отверстий:

Все, что я описал выше - касается только односторонних и двухсторонних печатных плат(на заводе их, кстати, никто так не называет, все говорят ОПП и ДПП). Многослойные платы(МПП) делаются на этом же оборудовании, но немного по другой технологии.
Изготовление ядер
Ядро - это внутренний слой тонкого текстолита с медными проводниками на нем. Таких ядер в плате может быть от 1(плюс две стороны - трехслойная плата) до 20. Одно из ядер называется золотым - это означает, что оно используется в качестве реперного - того слоя, по которому выставляются все остальные. Ядра выглядят вот так:


Изготавливаются они точно так же, как и обычные платы, только толщина стеклотекстолита очень мала - обычно 0,5мм. Лист получается такой тонкий, то его можно изгибать, как плотную бумагу. На его поверхность наносится медная фольга, и дальше происходят все обычные стадии - нанесение, экспонирование фоторезиста и травление. Итогом этого являются вот такие листы:


После изготовления дорожки проверяются на целостность на станке, который сравнивает рисунок платы на просвет с фотошаблоном. Кроме этого, существует еще и визуальный контроль. Причем реально визуальный - сидят люди и смотрят в заготовки:


Иногда какая-то из стадий контроля выносит вердикт о плохом качестве одной из заготовок(черные крестики):


Этот лист плат, в которой случился дефект все равно изготовится полностью, но после нарезки бракованная плата пойдет в мусор. После того, как все слои изготовлены и проверены, наступает черед следующей технологической операции.
Сборка ядер в пакет и прессование
Это происходит в зале под названием «Участок прессования»:


Ядра для платы выкладываются вот в такую стопочку:


А рядом кладется карта расположения слоев:


После чего в дело вступает полуавтоматическая машина прессования плат. Полуавтоматичность ее заключается в том, что оператор должен по ее команде подавать ей ядра в определенном порядке.


Перекладывая их для изоляции и склеивания листами препрега:


А дальше начинается магия. Автомат захватывает и переносит листы в рабочее поле:


А затем совмещает их по реперным отверстиям относительно золотого слоя.


Дальше заготовка поступает в горячий пресс, а после прогрева и полимеризации слоев - в холодный. После этого мы получаем такой же лист стеклотекстолита, который ничем не отличается от заготовок для двухслойных печатных плат. Но внутри у него доброе сердце несколько ядер со сформированными дорожками, которые, правда, еще никак не связаны между собой и разделены изолирующими слоями полимеризированного препрега. Дальше процесс проходит те же стадии, что я уже описывал ранее. Правда, за небольшим различием.
Сверловка заготовок
При сборке пакета ОПП и ДПП для сверловки его не нужно центровать, и его можно собирать с некоторым допуском - все равно это первая технологическая операция, и все остальные будут ориентироваться на нее. А вот при сборке пакета многослойных печатных плат очень важно привязаться к внутренним слоям - при сверловке отверстие должно пройти насквозь все внутренние контакты ядер, соединив их в экстазе при металлизации. Поэтому пакет собирается вот на такой машинке:


Это рентгеновский сверлильный станок, который видит сквозь текстолит внутренние металлически реперные метки и по их расположению сверлит базовые отверстия, в которые вставляются крепежи для установки пакета в сверлильный станок.

Металлизация
Дальше все просто - заготовки сверлятся, очищаются, активируются и металлизируются. Металлизация отверстия связывает между собой все медные пяточки внутри печатной платы:


Таким образом, завершая электронную схему внутренностей печатной платы.
Проверка и шлифы
Дальше от каждой платы отрезается кусочек, который шлифуется и рассматривается в микроскоп, для того, чтобы удостовериться, что все отверстия получились нормально.


Эти кусочки называются шлифы - поперечно срезанные части печатной платы, которые позволяет оценить качество платы в целом и толщину медного слоя в центральных слоях и переходных отверстиях. В данном случае, под шлиф пускают не отдельную плату, а специально сделанные с краю платы весь набор диаметров переходных отверстий, которые используются в заказе. Шлиф, залитый в прозрачный пластик выглядит вот так:

Фрезеровка или скрайбирование
Далее платы, которые находятся на групповой заготовке необходимо разделить на несколько частей. Делается это либо на фрезерном станке:


Который фрезой вырезает нужный контур. Другой вариант - скрайбирование, это когда контур платы не вырезается, а надрезается круглым ножом. Это быстрее и дешевле, но позволяет делать только прямоугольные платы, без сложных контуров и внутренних вырезов. Вот скрайбированная плата:

А вот фрезерованная:


Если заказывалось только изготовление плат, то на этом все заканчивается - платы складывают в стопочку:


Оборачивается все тем же маршрутным листом:


И ждет отправки.
А если нужна сборка и запайка, то впереди есть еще кое-что интересное.
Сборка


Дальше плата, если это необходимо поступает на участок сборки, где на нее напаиваются нужные компоненты. Если мы говорим о ручной сборке - то все понятно, сидят люди(кстати, в большинстве своем женщины, когда я к ним зашел, у меня уши в трубочку свернулись от песни из магнитофона «Боже, какой мужчина»):


И собирают, собирают:


А вот если говорить о автоматической сборке, то там все гораздо интереснее. Происходит это вот на такой длинной 10-метровой установке, которая делает все - от нанесения паяльной пасты до пайки по термопрофилям.


Кстати, все серьёзно. Там заземлены даже коврики:


Как я говорил, начинается все с того, что на неразрезанный лист с печатными платами устанавливают вместе с металлическим шаблоном в начало станка. На шаблон густо намазывается паяльная паста, и ракельный нож проходя сверху оставляет точно отмерянные количества пасты в углублениях шаблона.


Шаблон поднимается, и паяльная паста оказывается в нужных местах на плате. Кассеты с компонентами устанавливаются в отсеки:


Каждый компонент заводится в соответствующую ему кассету:


Компьютеру, управляющему станком, говорится где какой компонент находится:


И он начинает расставлять компоненты на плате.


Выглядит это вот так(видео не мое). Можно смотреть вечно:

Аппарат установки компонентов называется Yamaha YS100 и способен устанавливать 25000 компонентов в час(на один тратится 0.14 секунды).
Дальше плата проходит горячую и холодные зоны печки(холодная - это значит «всего» 140°С, по сравнению с 300°С в горячей части). Побыв строго определенное время в каждой зоне со строго определенной температурой, паяльная паста плавится, образуя одно целое с ножками элементов и печатной платой:


Запаянный лист плат выглядит вот так:


Все. Плата разрезается, если нужно и упаковывается, чтобы вскоре уехать к заказчику:

Примеры

Напоследок, примеры того, что технотех может делать. Например, конструирование и изготовление многослойных плат(до 20 слоев), включая платы для BGA компонентов и HDI платы:


C со всеми «номерными» военными приемками(да, на каждой плате вручную ставится номер и дата изготовления - этого требуют военные):


Проектирование, изготовления и сборка плат практически любой сложности, из своих или из компонентов заказчика:


И ВЧ, СВЧ, платы с металлизированным торцом и металлическим основанием(фотографий этого я не сделал, к сожалению).
Конечно, они не конкурент резониту в плане быстрых прототипов плат, но если у вас от 5 штук, рекомендую запросить у них стоимость изготовления - они очень хотят работать с гражданскими заказами.

И все-таки, в России производство еще есть. Что бы там не говорили.

Напоследок можно отдышаться, поднять глаза на потолок и попытаться разобраться в хитросплетениях труб:

Одно- и двусторонние печатные платы
Тип ПП Подготовка до 20 дм² до 50 дм² до 100 дм² до 200 дм² свыше 200 дм²
ОПП 950,00 155,00 140,00 125,00 120,00 115,00
ОПП+М 1 300,00 180,00 165,00 140,00 130,00 125,00
ОПП+М+Ш 1 600,00 195,00 175,00 150,00 135,00 130,00
AL ОПП 1 600,00 280,00 250,00 200,00 185,00 175,00
ДПП 1 400,00 190,00 175,00 155,00 145,00 140,00
ДПП+М 1 900,00 235,00 210,00 175,00 165,00 160,00
ДПП+М+Ш 2 300,00 245,00 230,00 185,00 175,00 165,00
ДПП+М+2Ш 2 600,00 265,00 240,00 195,00 180,00 170,00

Срок изготовления:

  • Срочный - от 2 рабочих дней (К = 2.0)
  • Суперэкспресс - от 1 рабочего дня (К = 3.0)
  • Стандартный - 14 рабочих дней

Многослойные печатные платы
Тип ПП Подготовка до 20 дм² до 50 дм² до 100 дм² до 200 дм² свыше 200 дм²
4ПП 3 000,00 470,00 400,00 330,00 270,00 260,00
6ПП 3 700,00 640,00 500,00 445,00 395,00 385,00
8ПП 4 400,00 820,00 670,00 600,00 520,00 505,00
10ПП 5 500,00 1 090,00 935,00 845,00 780,00 760,00
12ПП 6 100,00 1 320,00 1 150,00 1 000,00 905,00 875,00
14ПП 6 700,00 1 545,00 1 350,00 1 180,00 1 070,00 1 020,00
16ПП 7 300,00 1 780,00 1 575,00 1 380,00 1 250,00 1 180,00
18ПП и более по запросу

Цены указаны в рублях с учетом НДС для стандартных сроков производства, действуют с 21.01.2019 г.

Срок изготовления:

  • Срочный - от 5 рабочих дней (К = 2.0)
  • Суперэкспресс - от 3 рабочих дней (К = 3.0)
  • Стандартный - 18 рабочих дней

Повышающий коэффициент (К) применяется к стоимости дм2.


Внимание:

  • день приема заказа и время на доставку не учитываются в производственных сроках
  • электротестирование, нестандартные материалы, иммерсионные финишные покрытия увеличивают срок изготовления (только для срочных заказов)
  • минимальный заказ при наличии нестандартных параметров – одна стандартная технологическая заготовка (~8дм² для ОПП/ДПП, ~4дм² для МПП). Под нестандартными параметрами подразумевается нестандартный тип и толщина материала, нестандартная толщина медной фольги, нестандартный цвет маски, МПП с нестандартной структурой и т.д.
  • заказы печатных плат объемом до 20 дм², выполняемые по срочному / суперсрочному тарифу, запускаются в производство до поступления оплаты автоматически, если в вашей письменной заявке не было указано иное. Все остальные заказы запускаются в производство после 100% оплаты.

Дополнительно оплачивается:

Финишное покрытие


Применяется повышающий коэффициент за срочность. Цены указаны в рублях с учетом НДС.

Нестандартные печатные платы (по запросу)

Материалы в наличии на нашем складе.

Платы повышенной сложности

Коэффициент = 1.5 к стоимости подготовки и дм2:

Дополнительные услуги

Электротестирование ОПП и ДПП до 5 класса точности 40,00 руб./дм²
для МПП и плат повышенной сложности входит в стоимость
Покрытие ламелей Au - 0,30 руб./мм², Ni - 0,05 руб./мм²
Мехобработка штучных печатных плат площадью менее 0,3 дм² менее 0,05 дм² (минимум 0,0025 дм²): коэффициент = 4
от 0,05 до 0,1 дм²: коэффициент = 2
от 0,1 до 0,2 дм²: коэффициент = 1,5
от 0,2 до 0,3 дм²: коэффициент = 1,2
Печатные платы с высокой плотностью сверления, сложным и трудоемким фрезерованием, с отклонениями от стандартной технологической карты по запросу
Изготовление комплектов печатных плат коэффициент = 1,2
Недопустимость бракованных плат на панели (No X-out) коэффициент = 1,1
Недопустимость ремонта на печатных платах коэффициент = 1,2
Объединение различных печатных плат в комплект. по запросу
Работа с Конструкторской Документацией (КД по ЕСКД) и другими документами помимо карты-заказа по запросу

Нестандартные материалы

Специальные возможности

Доставка

  • по Москве и Санкт-Петербургу - 450 руб.
  • в любой регион России зависит от выбранной транспортной компании, удаленности адресата и веса груза

Крупные партии печатных плат

Тип ПП Подготовка Стоимость за дм²
200-300 дм² до 500 дм² более 500 дм²
ОПП+М 50,00 2,20 2,00 по запросу
ДПП+М 100,00 2,60 2,50 по запросу
4ПП 200,00 5,80 4,20 по запросу
6ПП 300,00 7,00 5,80 по запросу
8ПП 400,00 8,00 7,10 по запросу

* цены указаны в у.е. с учетом НДС.
1 у.е. равен доллару США по курсу ЦБ РФ на день выставления счёта.

Сроки производства - от 3-х недель.

Дополнительно оплачивается:

  • Изготовление штампа
  • Изготовление адаптера для электротеста
  • Нестандартные финишные покрытия
  • Нестандартная толщина стеклотекстолита
  • Нестандартная толщина медной фольги
  • Платы на нестандартных материалах
  • Печатные платы повышенной сложности
  • МПП с нестандартной структурой, со слепыми и скрытыми переходами

Цены на крупные серии печатных плат объемом свыше 500 дм2, а также цены на печатные платы с металлическим основанием предоставляются по запросу.

Контрактное производство

Сроки монтажа

Тариф Поверхностный
или выводной
Поверхностный +
выводной
Повышающий
коэффициент
стандартный от 6 рабочих дней от 12 рабочих дней нет
срочный от 3 рабочих дней от 6 рабочих дней 1,5
суперсрочный от 2 рабочих дней от 4 рабочих дней 2,0

*день приема заказа и время на доставку не учитываются в производственных сроках

Монтаж прототипов и средних серий


Подготовка к производству - 3 500 р.

* цены указаны в рублях с учётом НДС для стандартных сроков монтажа
** монтаж каждой стороны печатной платы расcчитывается как отдельный заказ

Монтаж BGA

Количество до 10 шт. до 20 шт. до 50 шт. до 100 шт. больше 100 шт.
1,27-1,0 мм 600 510 450 360 по запросу
0,8 мм 750 660 600 510 по запросу
0,5 мм 800 750 650 550 по запросу
0,4 мм* 1400 по запросу по запросу по запросу по запросу

* с обязательным рентгенконтролем.

Монтаж QFN, LGA, DFN ... (только для ручного SMT - монтажа)


** цены указаны в рублях с учётом НДС для стандартных сроков монтажа
*** цены включают в себя стоимость расходных материалов.

Дополнительно оплачивается

  • отмывка плат от остатков флюса
  • разделение плат после монтажа
  • бессвинцовый монтаж
  • монтаж плат сложной формы и гибко-жестких печатных плат

Автоматический монтаж

  • автоматический монтаж - от 10 коп. за точку пайки
  • выводной монтаж - от 1 руб. 30 коп. за точку пайки
  • сроки - от 4 рабочих дней

* цены указаны в рублях с учётом НДС

Дополнительные услуги

  • влагозащита и заливка (лак, компаунд и др.)
  • сборка
  • программирование, настройка и регулировка

Полный цикл контрактного производства

Группа компаний РЕЗОНИТ предлагает своим клиентам полный цикл производства электроники. Крупносерийное производство, включающее изготовление плат и поставку комплектующих, монтаж и сборку, настройку и тестирование, упаковку и доставку до склада клиента или конечного потребителя.

Специальное предложение при заказе полного цикла серийного* производства:

  • подготовка производства ПП - бесплатно
  • подготовка монтажного производства - бесплатно
  • трафареты для монтажа - бесплатно
  • доставка - бесплатно

* крупные серии от 1,0 млн. точек пайки

Трафареты для SMT-монтажа

(скачать прайс)

Специализированная нержавеющая сталь японского и английского производства.
Доступные толщины: 80, 100, 120, 130, 150, 200 и 300 мкм

к
Типоразмер Подготовка Цена за апертуру
Треб. Обработка Готовый д/резки до 2000 2001-3000 3001-5000 больше 5000
300 х 300 2 000р. 1 500р. 3,00р. 2,80р. 2,60р. 2,50р.
400 х 500 2 500р. 2 000р. 3,00р. 2,80р. 2,60р. 2,50р.
600 х 600 3 000р. 2 500р. 2,50р. 2,30р. 2,15р. 2,00р.
600 х 800 3 500р. 3 000р. 2,50р. 2,30р. 2,15р. 2,00р.

* Цены указаны в рублях с учётом НДС.
** Цена включает в себя стоимость материала, подготовку файлов, генерирование программ для станка, АОИ, упаковку

Сроки производства – 1 рабочий день

День приёма заказа и время на доставку не учитывается в производственных сроках.

Срочное изготовление – 6 часов (коэффицент - 2)

  • Готовым для резки считается проект трафарета, присланный в виде гербер-файла (вид со стороны ракеля), в котором есть апертуры, рамка, реперные знаки и текстовая гравировка (если требуется), и в котором ничего не надо менять. В данном случае предоставляется скидка 500 рублей на подготовку производства.
  • Подготовка производства трафаретов различных плат, размещённых на одном листе - 300 рублей за каждое объединение.

Паяльная паста

(скачать прайс) G4(A)-SM833 Sn62/Pb36/Ag2 179 20-45 9,5 120 110 G5(A)-SM833 Sn62/Pb36/Ag2 179 20-38 9,5 125 115 G5-SM800 Sn63/Pb37 183 20-38 9,5 105 97

Бессвинцовые безотмывные паяльные пасты

ULF-208-98 Sn96,5/Ag3/Cu0,5 217 20-45 11 150 140 ULF-308-98 Sn99/Ag0,3/Cu0,7 227 20-45 11 140 130 LF3-981 Sn42/Bi58 138 20-45 10,5 115 110

Водосмываемые паяльные пасты

G4(A)-WS500 Sn62/Pb36/Ag2 179 20-45 10 170 160 G4-WS500 Sn63/Pb37 183 20-45 10 140 130

* Цены указаны в у.е. с учётом НДС.
1 у.е. = доллару США по курсу ЦБ на день выставления счёта

Упаковка в банках по 500 г.

Припой

ПОС - 60 Sn60/Pb40 183-190 0,7-1,2 1-2,5 по запросу ПОС - 63 Sn63/Pb37 183-190 0,7-1,2 1-2,5 по запросу ПОС - 63 брусок Sn63/Pb37 183 1 кг/шт нет по запросу

Все цены указаны в рублях с учётом НДС.
Производство: Франция, Нидерланды.