Из чего состоит атомный реактор. Классификация ядерных реакторов по назначению

Сегодня мы совершим небольшое путешествие в мир ядерной физики. Темой нашей экскурсии будет ядерный реактор. Вы узнаете, как он устроен, какие физические принципы лежат в основе его работы и где применяют это устройство.

Зарождение атомной энергетики

Первый в мире ядерный реактор был создан в 1942 году в США экспериментальной группой физиков под руководством лауреата нобелевской премии Энрико Ферми. Тогда же ими была осуществлена самоподдерживающаяся реакция расщепления урана. Атомный джин был выпущен на свободу.

Первый советский ядерный реактор был запущен в 1946 году, а спустя 8 лет дала ток первая в мире АЭС в городе Обнинске. Главным научным руководителем работ в атомной энергетике СССР был выдающийся физик Игорь Васильевич Курчатов.

С тех сменилось несколько поколений ядерных реакторов, но основные элементы его конструкции сохранились неизменными.

Анатомия атомного реактора

Эта ядерная установка представляет собой толстостенный стальной бак с цилиндрической ёмкостью от нескольких кубических сантиметров до многих кубометров.

Внутри этого цилиндра размещается святая святых - активная зона реактора. Именно здесь происходит цепная реакция деления ядерного топлива.

Рассмотрим, как происходит этот процесс.

Ядра тяжелых элементов, в частности Уран-235 (U-235), под действием небольшого энергетического толчка способны разваливаться на 2 осколка приблизительно равной массы. Возбудителем этого процесса является нейтрон.

Осколки чаще всего представляют собой ядра бария и криптона. Каждый из них несет положительный заряд, поэтому силы кулоновского отталкивания вынуждают их разлетаться в разные стороны со скоростью около 1/30 световой скорости. Эти осколки являются носителями колоссальной кинетической энергии.

Для практического использования энергии, необходимо, чтобы её выделение носило самоподдерживающийся характер. Цепная реакция, о которой идёт речь, тем интересна, что каждый акт деления сопровождается испусканием новых нейтронов. На один начальный нейтрон в среднем возникает 2-3 новых нейтрона. Количество делящихся ядер урана лавинообразно нарастает, вызывая выделение огромной энергии. Если этот процесс не контролировать - произойдет ядерный взрыв. Он имеет место в .

Чтобы регулировать число нейтронов в систему вводятся материалы, которые поглощают нейтроны, обеспечивая плавное выделение энергии. В качестве поглотителей нейтронов используют кадмий или бор.

Как же обуздать и использовать громадную кинетическую энергию осколков? Для этих целей служит теплоноситель, т.е. специальная среда, двигаясь в которой осколки тормозятся и нагревают её до чрезвычайно высоких температур. Такой средой может являться обычная или тяжелая вода, жидкие металлы (натрий), а также некоторый газы. Чтобы не вызвать переход теплоносителя в парообразное состояние, в активной зоне поддерживается высокое давление (до 160 атм). По этой причине стенки реактора изготавливают из десятисантиметровой стали специальных сортов.

Если нейтроны вылетят за пределы ядерного топлива, то цепная реакция может прерваться. Поэтому существует критическая масса делящегося вещества, т.е. его минимальная масса, при которой, будет поддерживаться цепная реакция. Она зависит от различных параметров, в том числе и от наличия отражателя, окружающего активную зону реактора. Он служит для предотвращения утечки нейтронов в окружающую среду. Наиболее распространенным материалом для этого конструктивного элемента является графит.

Процессы, происходящие в реакторе, сопровождаются выделением самого опасного вида радиации – гамма излучения. Чтобы минимизировать эту опасность, в нём предусмотрена противорадиационная защита.

Как работает атомный реактор

В активной зоне реактора размещают ядерное горючее, именуемое ТВЭЛами. Они представляют собой таблетки, сформированные из расщепляемого материала и уложенные в тонкие трубки длиной около 3,5 м и диаметром в 10 мм.

Сотни однотипных топливных сборок размещают в активную зону, они и становятся источниками тепловой энергии, выделяемой в процессе цепной реакции. Теплоноситель, омывающий ТВЭЛы, образует первый контур реактора.

Нагретый до высоких параметров, он перекачивается насосом в парогенератор, где передает свою энергию воде второго контура, превращая её в пар. Полученный пар вращает турбогенератор. Вырабатываемая этим агрегатом электроэнергия передается потребителю. А отработанный пар, охлажденный водой из пруда–охладителя, в виде конденсата, возвращается в парогенератор. Цикл замыкается.

Такая двухконтурная схема работа ядерной установки исключает проникновение радиации, сопровождающей процессы, происходящие в активной зоне, за его пределы.

Итак, в реакторе происходит цепочка превращений энергии: ядерная энергия расщепляемого материала → в кинетическую энергию осколков → тепловую энергию теплоносителя → кинетическую энергию турбины → и в электрическую энергию в генераторе.

Неизбежные потери энергии приводят к тому, что КПД атомных электростанций сравнительно не велик 33-34%.

Кроме выработки электрической энергии на АЭС ядерные реакторы используют для получения различных радиоактивных изотопов, для исследований во многих областях промышленности, для изучения допустимых параметров промышленных реакторов. Всё более широкое распространение получают транспортные реакторы, обеспечивающие энергией двигатели транспортных средств.

Типы ядерных реакторов

Как правило, ядерные реакторы работают на уране U-235. Однако его содержание в природном материале чрезвычайно мало, всего 0,7%. Основную же массу природного урана составляет изотоп U-238. Цепную реакцию в U-235 могут вызвать лишь медленные нейтроны, а изотоп U-238 расщепляется только быстрыми нейтронами. В результате же расщепления ядра рождаются как медленные, так и быстрые нейтроны. Быстрые нейтроны, испытывая торможение в теплоносителе (воде), становятся медленным. Но количество изотопа U-235 в природном уране столь мало, что приходится прибегать к его обогащению, доводя его концентрацию до 3-5%. Процесс этот весьма дорогой и экономически невыгоден. Кроме того время исчерпания природных ресурсов этого изотопа оценивается лишь 100-120 годами.

Поэтому в атомной промышленности происходит постепенный переход на реакторы, работающие на быстрых нейтронах.

Основное их отличие - в качестве теплоносителя используют жидкие металлы, которые не замедляют нейтроны, а в роли ядерного горючего используют U-238. Ядра этого изотопа через цепочку ядерных превращений переходят в Плутоний-239, который подвержен цепной реакции так же как и U-235. Т.е имеет место воспроизведение ядерного горючего, причём в количестве, превышающем его расход.

По оценке специалистов запасов изотопа Урана-238 должно хватить на 3000 лет. Этого времени вполне достаточно, чтобы у человечества хватило времени для разработки иных технологий.

Проблемы использования ядерной энергетики

Наряду с очевидными преимуществами ядерной энергетики, нельзя недооценивать масштаб проблем, связанных с эксплуатацией ядерных объектов.

Первая из них - это утилизация радиоактивных отходов и демонтированного оборудования атомной энергетики. Эти элементы обладают активным радиационным фоном, который сохраняется на протяжении длительного периода. Для утилизации этих отходов используют специальные свинцовые контейнеры. Их предполагается хоронить в районах вечной мерзлоты на глубине до 600 метров. Поэтому постоянно ведутся работы по поиску способа переработки радиоактивных отходов, что должно решить проблему утилизации и способствовать сохранению экологии нашей планеты.

Второй не менее тяжелой проблемой является обеспечение безопасности в процессе эксплуатации АЭС. Крупные аварии, подобные Чернобыльской, способны унести множество человеческих жизней и вывести из использования огромные территории.

Авария на японской АЭС «Фукусима-1» лишь подтвердила потенциальную опасность, которая проявляется при возникновении внештатной ситуации на ядерных объектах.

Однако возможности ядерной энергетики столь велики, что экологические проблемы уходят на второй план.

На сегодняшний день у человечества нет иного пути утоления всё нарастающего энергетического голода. Основой ядерной энергетики будущего, вероятно, станут «быстрые» реакторы с функцией воспроизводства ядерного топлива.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Устройство и принцип действия основаны на инициализации и контроле самоподдерживающейся ядерной реакции. Его используют в качестве исследовательского инструмента, для производства радиоактивных изотопов и в качестве источника энергии для атомных электростанций.

принцип работы (кратко)

Здесь используется процесс при котором тяжелое ядро ​​распадается на два более мелких фрагмента. Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны. Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее. Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией. При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции. Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны. Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

В атомной бомбе цепная реакция увеличивает свою интенсивность, пока не будет расщеплена большая часть материала. Это происходит очень быстро, производя чрезвычайно мощные взрывы, характерные для таких бомб. Устройство и принцип действия ядерного реактора основаны на поддержании цепной реакции на регулируемом, почти постоянном уровне. Он сконструирован таким образом, что взорваться, как атомная бомба, не может.

Цепная реакция и критичность

Физика ядерного реактора деления состоит в том, что цепная реакция определяется вероятностью расщепления ядра после испускания нейтронов. Если популяция последних уменьшается, то скорость деления в конце концов упадет до нуля. В этом случае реактор будет находиться в докритическом состоянии. Если же популяция нейтронов поддерживается на постоянном уровне, то скорость деления будет оставаться стабильной. Реактор будет находиться в критическом состоянии. И, наконец, если популяция нейтронов со временем растет, скорость деления и мощность будет увеличиваться. Состояние активной зоны станет сверхкритическим.

Принцип действия ядерного реактора следующий. Перед его запуском популяция нейтронов близка к нулю. Затем операторы удаляют управляющие стержни из активной зоны, увеличивая деление ядер, что временно переводит реактор в сверхкритическое состояние. После выхода на номинальную мощность операторы частично возвращают управляющие стержни, регулируя количество нейтронов. В дальнейшем реактор поддерживается в критическом состоянии. Когда его необходимо остановить, операторы вставляют стержни полностью. Это подавляет деление и переводит активную зону в докритическое состояние.

Типы реакторов

Большинство существующих в мире ядерных установок являются энергетическими, генерирующими тепло, необходимое для вращения турбин, которые приводят в движение генераторы электрической энергии. Также есть много исследовательских реакторов, а некоторые страны имеют подводные лодки или надводные корабли, движимые энергией атома.

Энергетические установки

Существует несколько видов реакторов этого типа, но широкое применение нашла конструкция на легкой воде. В свою очередь, в ней может использоваться вода под давлением или кипящая вода. В первом случае жидкость под высоким давлением нагревается теплом активной зоны и поступает в парогенератор. Там тепло от первичного контура передается на вторичный, также содержащий воду. Генерируемый в конечном счете пар служит рабочей жидкостью в цикле паровой турбины.

Реактор кипящего типа работает по принципу прямого энергетического цикла. Вода, проходя через активную зону, доводится до кипения на среднем уровне давления. Насыщенный пар проходит через серию сепараторов и сушилок, расположенных в корпусе реактора, что приводит его в сверхперегретое состояние. Перегретый водяной пар затем используется в качестве рабочей жидкости, вращающей турбину.

Высокотемпературные с газовым охлаждением

Высокотемпературный газоохлаждаемый реактор (ВТГР) - это ядерный реактор, принцип работы которого основан на применении в качестве топлива смеси графита и топливных микросфер. Существуют две конкурирующие конструкции:

  • немецкая «засыпная» система, которая использует сферические топливные элементы диаметром 60 мм, представляющие собой смесь графита и топлива в графитовой оболочке;
  • американский вариант в виде графитовых гексагональных призм, которые сцепляются, создавая активную зону.

В обоих случаях охлаждающая жидкость состоит из гелия под давлением около 100 атмосфер. В немецкой системе гелий проходит через промежутки в слое сферических топливных элементов, а в американской - через отверстия в графитовых призмах, расположенных вдоль оси центральной зоны реактора. Оба варианта могут работать при очень высоких температурах, так как графит имеет чрезвычайно высокую температуру сублимации, а гелий полностью инертен химически. Горячий гелий может быть применен непосредственно в качестве рабочей жидкости в газовой турбине при высокой температуре или его тепло можно использовать для генерации пара водяного цикла.

Жидкометаллический и принцип работы

Реакторам на быстрых нейтронах с натриевым теплоносителем уделялось большое внимание в 1960-1970-х годах. Тогда казалось, что их возможности по воспроизводству в ближайшее время необходимы для производства топлива для быстро развивающейся атомной промышленности. Когда в 1980-е годы стало ясно, что это ожидание нереалистично, энтузиазм угас. Однако в США, России, Франции, Великобритании, Японии и Германии построен ряд реакторов этого типа. Большинство из них работает на диоксиде урана или его смеси с диоксидом плутония. В Соединенных Штатах, однако, наибольший успех был достигнут с металлическими топливом.

CANDU

Канада сосредоточила свои усилия на реакторах, в которых используется природный уран. Это избавляет от необходимости для его обогащения прибегать к услугам других стран. Результатом такой политики стал дейтерий-урановый реактор (CANDU). Контроль и охлаждение в нем производится тяжелой водой. Устройство и принцип работы ядерного реактора состоит в использовании резервуара с холодной D 2 O при атмосферном давлении. Активная зона пронизана трубами из циркониевого сплава с топливом из природного урана, через которые циркулирует охлаждающая его тяжелая вода. Электроэнергия производится за счет передачи теплоты деления в тяжелой воде охлаждающей жидкости, которая циркулирует через парогенератор. Пар во вторичном контуре затем проходит через обычный турбинный цикл.

Исследовательские установки

Для проведения научных исследований чаще всего используется ядерный реактор, принцип работы которого состоит в применении водяного охлаждения и пластинчатых урановых топливных элементов в виде сборок. Способен функционировать в широком диапазоне уровней мощности, от нескольких киловатт до сотен мегаватт. Поскольку производство электроэнергии не является основной задачей исследовательских реакторов, они характеризуются вырабатываемой тепловой энергией, плотностью и номинальной энергией нейтронов активной зоны. Именно эти параметры помогают количественно оценить способность исследовательского реактора проводить конкретные изыскания. Маломощные системы, как правило, функционируют в университетах и ​​используются для обучения, а высокая мощность необходима в научно-исследовательских лабораториях для тестирования материалов и характеристик, а также для общих исследований.

Наиболее распространен исследовательский ядерный реактор, строение и принцип работы которого следующие. Его активная зона расположена в нижней части большого глубокого бассейна с водой. Это упрощает наблюдение и размещение каналов, по которым могут быть направлены пучки нейтронов. При низких уровнях мощности нет необходимости прокачивать охлаждающую жидкость, так как для поддержания безопасного рабочего состояния естественная конвекция теплоносителя обеспечивает достаточный отвод тепла. Теплообменник, как правило, находится на поверхности или в верхней части бассейна, где скапливается горячая вода.

Корабельные установки

Первоначальным и основным применением ядерных реакторов является их использование в подводных лодках. Главным их преимуществом является то, что, в отличие от систем сжигания ископаемого топлива, для выработки электроэнергии им не требуется воздух. Следовательно, атомная субмарина может оставаться в погруженном состоянии в течение длительного времени, а обычная дизель-электрическая подлодка должна периодически подниматься на поверхность, чтобы запускать свои двигатели в воздухе. дает стратегическое преимущество кораблям ВМС. Благодаря ей отпадает необходимость заправляться в иностранных портах или от легко уязвимых танкеров.

Принцип работы ядерного реактора на подводной лодке засекречен. Однако известно, что в США в нем используется высокообогащенный уран, а замедление и охлаждение производится легкой водой. Конструкция первого реактора атомной субмарины USS Nautilus находилась под сильным влиянием мощных исследовательских установок. Его уникальными особенностями является очень большой запас реактивности, обеспечивающей длительный период работы без дозаправки и возможность перезапуска после остановки. Электростанция в подлодках должна быть очень тихой, чтобы избежать обнаружения. Для удовлетворения конкретных потребностей различных классов субмарин были созданы разные модели силовых установок.

На авианосцах ВМС США используется ядерный реактор, принцип работы которого, как полагают, заимствован у крупнейших подлодок. Подробные сведения их конструкции также не были опубликованы.

Кроме США, атомные подводные лодки имеются у Великобритании, Франции, России, Китая и Индии. В каждом случае конструкция не разглашалась, но считается, что все они весьма схожи - это является следствием одинаковых требований к их техническим характеристикам. Россия также обладает небольшим флотом на которых устанавливались такие же реакторы, как и на советских субмаринах.

Промышленные установки

Для целей производства используется ядерный реактор, принцип работы которого состоит в высокой производительности при низком уровне производства энергии. Это обусловлено тем, что длительное пребывание плутония в активной зоне приводит к накоплению нежелательного 240 Pu.

Производство трития

В настоящее время основным материалом, получаемым с помощью таких систем, является тритий (3 H или T) - заряд для Плутоний-239 имеет длительный период полураспада, равный 24100 годам, поэтому страны с арсеналами ядерного оружия, использующими этот элемент, как правило, имеют его больше, чем необходимо. В отличие от 239 Pu, период полураспада трития составляет примерно 12 лет. Таким образом, чтобы поддерживать необходимые запасы, этот радиоактивный изотоп водорода должен производиться непрерывно. В США в Саванна-Ривер (штат Южная Каролина), например, работает несколько реакторов на тяжелой воде, которые производят тритий.

Плавучие энергоблоки

Созданы ядерные реакторы, способные обеспечить электроэнергией и паровым отоплением удаленные изолированные районы. В России, например, нашли применение небольшие энергетические установки, специально предназначенные для обслуживания арктических населенных пунктов. В Китае 10-МВт установка HTR-10 снабжает теплом и электроэнергией исследовательский институт, в котором она находится. Разработки небольших автоматически управляемых реакторов с аналогичными возможностями ведутся в Швеции и Канаде. В период с 1960 по 1972 год армия США использовала компактные водяные реакторы для обеспечения удаленных баз в Гренландии и Антарктике. Они были заменены мазутными электростанциями.

Покорение космоса

Кроме того, были разработаны реакторы для энергоснабжения и передвижения в космическом пространстве. В период с 1967 по 1988 год Советский Союз устанавливал небольшие ядерные установки на спутники серии «Космос» для питания оборудования и телеметрии, но эта политика стала мишенью для критики. По крайней мере один из таких спутников вошел в атмосферу Земли, в результате чего радиоактивному загрязнению подверглись отдаленные районы Канады. Соединенные Штаты запустили только один спутник с ядерным реактором в 1965 году. Однако проекты по их применению в дальних космических полетах, пилотируемых исследованиях других планет или на постоянной лунной базе продолжают разрабатываться. Это обязательно будет газоохлаждаемый или жидкометаллический ядерный реактор, физические принципы работы которого обеспечат максимально высокую температуру, необходимую для минимизации размера радиатора. Кроме того, реактор для космической техники должен быть максимально компактным, чтобы свести к минимуму количество материала, используемого для экранирования, и для уменьшения веса во время старта и космического полета. Запас топлива обеспечит работу реактора на весь период космического полета.

: … довольно банально, но тем не менее я так и не нашел инфу в удобоваримой форме — как НАЧИНАЕТ работать атомный реактор. Про принцип и устройство работы всё уже 300 раз разжеванно и понятно, но вот то как получают топливо и из чего и почему оно не столь опасно пока не в реакторе и почему не вступает в реакцию до погружения в реактор! — ведь оно разогревается только внутри, тем не менее перед загрузкой твлы холодные и всё нормально, так что-же служит причиной нагрева элементов не совсем ясно, как на них воздействуют и так далее, желательно не по научному).

Сложно конечно такую тему оформить не «по научному», но попробую. Давайте сначала разберемся, что из себя представляют эти самые ТВЭЛы.

Ядерное топливо представляет собой таблетки черного цвета диаметром около 1 см. и высотой около 1.5 см. В них содержится 2 % двуокиси урана 235, и 98 % урана 238, 236, 239. Во всех случаях при любом количестве ядерного топлива ядерный взрыв развиться не может, т.к.для лавинообразной стремительной реакции деления, характерной для ядерного взрыва требуется концентрация урана 235 более 60%.

Двести таблеток ядерного топлива загружаются в трубку, изготовленную из металла цирконий. Длина этой трубки 3.5м. диаметр 1.35 см. Эта трубка называется ТВЭЛ- тепловыделяющий элемент. 36 ТВЭЛов собираются в кассету (другое название «сборка»).

Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций - это минимум 107 K из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции.

Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Ленинградская АЭС, Реактор РБМК

Начало работы реактора:

В начальный момент времени после первой загрузки топливом, цепная реакция деления в реакторе отсутствует, реактор находится в подкритическом состоянии. Температура теплоносителя значительно меньше рабочей.

Как мы уже тут упоминали, для начала цепной реакции делящийся материал должен образовать критическую массу, - достаточное количество спонтанно расщепляющегося вещества в достаточно небольшом пространстве, условие, при котором число нейтронов, выделяющихся при делении ядер должно быть больше числа поглощенных нейтронов. Это можно сделать, повысив содержание урана-235 (количество загруженных ТВЭЛОВ), либо замедлив скорость нейтронов, чтобы они не пролетали мимо ядер урана-235.

Вывод реактора на мощность осуществляется в несколько этапов. С помощью органов регулирования реактивности реактор переводится в надкритическое состояние Кэф>1 и происходит рост мощности реактора до уровня 1-2 % от номинальной. На этом этапе производится разогрев реактора до рабочих параметров теплоносителя причем скорость разогрева ограничена. В процессе разогрева органы регулирования поддерживают мощность на постоянном уровне. Затем производится пуск циркуляционных насосов и вводится в действие система отвода тепла. После этого мощность реактора можно повышать до любого уровня в интервале от 2 — 100 % номинальной мощности.

При разогреве реактора реактивность меняется, в виду изменения температуры и плотности материалов активной зоны. Иногда при разогреве меняется взаимное положение активной зоны и органов регулирования, которые входят в активную зону или выходят из нее, вызывая эффект реактивности при отсутствии активного перемещения органов регулирования.

Регулирование твердыми, движущимися поглощающими элементами

Для оперативного изменения реактивности в подавляющем большинстве случаев используется твердые подвижные поглотители. В реакторе РБМК управляющие стержни содержат втулки из карбида бора заключенные в трубку из алюминиевого сплава диаметром 50 или 70 мм. Каждый регулирующий стержень помещен в отдельный канал и охлаждается водой контура СУЗ (система управления и защиты) при средней температуре 50 ° С. По своему назначению стержни делятся на стержни АЗ (аварийной зашиты), в РБМК таких стержней 24 штуки. Стержни автоматического регулирования — 12 штук, Стержни локального автоматического регулирования — 12 штук, стержни ручного регулирования -131, и 32 укороченных стержня поглотителя (УСП). Всего имеется 211 стержней. Причем укороченные стержни вводятся в АЗ с низу остальные с верху.

Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

Выгорающие поглощающие элементы.

Для компенсации избыточной реактивности после загрузки свежего топлива, часто используют выгорающие поглотители. Принцип работы которых состоит в том, что они, подобно топливу, после захвата нейтрона в дальнейшем перестают поглощать нейтроны (выгорают). Причем скорости убыли в результате поглощения нейтронов, ядер поглотителей, меньше или равна скорости убыли, в результате деления, ядер топлива. Если мы загружаем в АЗ реактора топливо рассчитанное на работу в течении года, то очевидно, что количество ядер делящегося топлива в начале работы будет больше чем в конце, и мы должны скомпенсировать избыточную реактивность поместив в АЗ поглотители. Если для этой цели использовать регулирующие стержни, то мы должны постоянно перемещать их, по мере того как количество ядер топлива уменьшается. Использование выгорающих поглотителей позволяет уменьшить использование движущихся стержней. В настоящее время выгорающие поглотители часто помешают непосредственно в топливные таблетки, при их изготовлении.

Жидкостное регулирование реактивности.

Такое регулирование применяется, в частности, при работе реактора типа ВВЭР в теплоноситель вводится борная кислота Н3ВО3, содержащая ядра 10В поглощающие нейтроны. Изменяя концентрацию борной кислоты в тракте теплоносителя мы тем самым изменяем реактивность в АЗ. В начальный период работы реактора когда ядер топлива много, концентрация кислоты максимальна. По мере выгорания топлива концентрация кислоты снижается.

Механизм цепной реакции

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Исключение составляют подкритические реакторы с внешним источником тепловых нейтронов. Освобождение связанной реактивности по мере её снижения в силу естественных причин обеспечивает поддержание критического состояния реактора в каждый момент его работы. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, одновременно искусственно снижается k0 размножающей среды. Это достигается введением в активную зону веществ-поглотителей нейтронов, которые могут удаляться из активной зоны в последующем. Так же как и в элементах регулирования цепной реакции, вещества-поглотители входят в состав материала стержней того или иного поперечного сечения, перемещающихся по соответствующим каналам в активной зоне. Но если для регулирования достаточно одного-двух или нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Эти стержни называются компенсирующими. Регулирующие и компенсирующие стержни не обязательно представляют собой различные элементы по конструктивному оформлению. Некоторое число компенсирующих стержней может быть стержнями регулирования, однако функции тех и других отличаются. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.

Иногда стержни управления делаются не из материалов-поглотителей, а из делящегося вещества или материала-рассеивателя. В тепловых реакторах - это преимущественно поглотители нейтронов, эффективных же поглотителей быстрых нейтронов нет. Такие поглотители, как кадмий, гафний и другие, сильно поглощают лишь тепловые нейтроны благодаря близости первого резонанса к тепловой области, а за пределами последней ничем не отличаются от других веществ по своим поглощающим свойствам. Исключение составляет бор, сечение поглощения нейтронов которого снижается с энергией значительно медленнее, чем у указанных веществ, по закону l / v. Поэтому бор поглощает быстрые нейтроны хотя и слабо, но несколько лучше других веществ. Материалом-поглотителем в реакторе на быстрых нейтронах может служить только бор, по возможности обогащенный изотопом 10В. Помимо бора в реакторах на быстрых нейтронах для стержней управления применяются и делящиеся материалы. Компенсирующий стержень из делящегося материала выполняет ту же функцию, что и стержень-поглотитель нейтронов: увеличивает реактивность реактора при естественном её снижении. Однако, в отличие от поглотителя, такой стержень в начале работы реактора находится за пределами активной зоны, а затем вводится в активную зону.

Из материалов-рассеивателей в быстрых реакторах употребляется никель, имеющий сечение рассеяния быстрых нейтронов несколько больше сечений других веществ. Стержни-рассеиватели располагаются по периферии активной зоны и их погружение в соответствующий канал вызывает снижение утечек нейтронов из активной зоны и, следовательно, возрастание реактивности. В некоторых специальных случаях целям управления цепной реакцией служат подвижные части отражателей нейтронов, при перемещении изменяющие утечки нейтронов из активной зоны. Регулирующие, компенсирующие и аварийные стержни совместно со всем оборудованием, обеспечивающим их нормальное функционирование, образуют систему управления и защиты реактора (СУЗ).

Аварийная защита:

Аварийная защита ядерного реактора – совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты. Например, современные варианты реакторов ВВЭР включают «Систему аварийного охлаждения активной зоны» (САОЗ) – специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно «Правилам ядерной безопасности реакторных установок атомных станций», по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.

Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:

1. По плотности нейтронного потока – не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока – не менее чем тремя независимыми каналами.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:

1. При достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

Может кто то сможет еще менее по научному объяснить кратко как начинает работу энергоблок АЭС? :-)

Вспомните такую тему, как и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Для обычного человека современные высокотехнологичные устройства настолько таинственны и загадочны, что впору им поклоняться, как древние поклонялись молнии. Школьные уроки физики, изобилующие математическими выкладками, не решают проблему. А ведь рассказать интересно можно даже про атомный реактор, принцип работы которого понятен даже подростку.

Как работает атомный реактор?

Принцип действия данного высокотехнологического устройства выглядит следующим образом:

  1. При поглощении нейтрона ядерное топливо (чаще всего это уран-235 или плутоний-239 ) происходит деление атомного ядра;
  2. Высвобождается кинетическая энергия, гамма-излучение и свободные нейтроны;
  3. Кинетическая энергия преобразуется в тепловую (когда ядра сталкиваются с окружающими атомами), гамма-излучение поглощается самим реактором и превращается также в тепло;
  4. Часть из образованных нейтронов поглощается атомами топлива, что вызывает цепную реакцию. Для управления ей используются поглотители и замедлители нейтронов;
  5. С помощью теплоносителя (вода, газ или жидкий натрий) происходит отвод тепла от места прохождения реакции;
  6. Находящийся под давлением пар от нагретой воды используется для приведения во вращение паровых турбин;
  7. С помощью генератора механическая энергия вращения турбин преобразуется в переменный электрический ток.

Подходы к классификации

Оснований для типологии реакторов может быть множество:

  • По типу ядерной реакции . Деление (все коммерческие установки) или синтез (термоядерная энергетика, имеет распространение лишь в некоторых НИИ);
  • По теплоносителю . В абсолютном большинстве случаев с этой целью используется вода (кипящая или тяжелая). Иногда используются альтернативные решения: жидкий металл (натрий, свинец-висмутовый сплав, ртуть), газ (гелий, углекислый газ или азот), расплавленная соль (фторидные соли);
  • По поколению. Первое - ранние прототипы, которые не имели никакого коммерческого смысла. Второе - большинство ныне используемых АЭС, которые были построены до 1996 года. Третье поколение отличается от предыдущего лишь небольшими усовершенствованиями. Работа над четвертым поколением еще ведется;
  • По агрегатному состоянию топлива (газовое пока существует только на бумаге);
  • По целям использования (для производства электричества, пуска двигателя, производства водорода, опреснения, трансмутации элементов, получение нейронного излучения, теоретические и следовательские цели).

Устройство атомного реактора

Основными компонентами реакторов на большинстве электростанций являются:

  1. Ядерное топливо - вещество, которое необходимо для производства тепла для энергетических турбин (как правило, низкообогащенный уран);
  2. Активная зона ядерного ректора - именно здесь проходит ядерная реакция;
  3. Замедлитель нейтронов - снижает скорость быстрых нейтронов, превращая их в тепловые нейтроны;
  4. Пусковой нейтронный источник - используется для надежного и стабильного пуска ядерной реакции;
  5. Поглотитель нейтронов - имеются на некоторых электростанциях для снижения высокой реакционной способности свежего топлива;
  6. Нейтронная гаубица - используется для повторного инициирования реакции после выключения;
  7. Охлаждающая жидкость (очищенная вода);
  8. Управляющие стержни - для регулирования скорости деления ядер урана или плутония;
  9. Водный насос - перекачивает воду в паровой котел;
  10. Паровая турбина - превращает тепловую энергию пара во вращательную механическую;
  11. Градирня - устройство для отвода лишнего тепла в атмосферу;
  12. Система приема и хранения радиоактивных отходов;
  13. Системы безопасности (аварийные дизель-генераторы, устройства для аварийного охлаждения активной зоны).

Как устроены последние модели

Последнее 4-е поколение реакторов будет доступно для коммерческой эксплуатации не раньше 2030 года . В настоящее время принцип и устройство их работы находятся на этапе разработки. Согласно современным данным, эти модификации будут отличаться от существующих моделей такими преимуществами :

  • Система быстрого газового охлаждения. Предполагается, что в качестве охлаждающего вещества будет использован гелий. Согласно проектной документации, таким образом можно охлаждать реакторы с температурой 850 °С. Для работы при таких высоких температурах потребуется и специфическое сырье: композитные керамические материалы и актинидные соединения;
  • В качестве первичного теплоносителя возможно использование свинца или свинцово-висмутового сплава. Эти материалы имеют низкий показатель нейтронного поглощения и относительно низкую температуру плавления;
  • Также в качестве основного теплоносителя может использоваться смесь из расплавленных солей. Тем самым удастся работать при более высоких температурах, чем современные аналоги с водяным охлаждением.

Естественные аналоги в природе

Ядерный реактор воспринимается в общественном сознании исключительно как продукт высоких технологий. Однако по факту первое такое устройство имеет природное происхождение . Оно было обнаружено в регионе Окло, что в центральноафриканском государстве Габон:

  • Реактор был образован из-за подтопления урановых пород подземными водами. Они выступили как нейтронные замедлители;
  • Тепловая энергия, выделяющаяся при распаде урана, превращает воду в пар, и цепная реакция останавливается;
  • После падения температуры охлаждающей жидкости все повторяется вновь;
  • Если бы жидкость не выкипала и не останавливала течение реакции, человечество бы столкнулось с новой природной катастрофой;
  • Самоподдерживаемое деление ядер началось в этом реакторе около полутора миллиардов лет назад. За это время было выделено около 0,1 миллиона ватт выходной мощности;
  • Подобное чудо света на Земле является единственным известным. Появление новых невозможно: доля урана-235 в природном сырье намного ниже уровня, необходимого для поддержания цепной реакции.

Сколько атомных реакторов в Южной Корее?

Бедная на природные ресурсы, но промышленно развитая и перенаселенная Республика Корея испытывает чрезвычайную потребность в энергии. На фоне отказа Германии от мирного атома эта страна возлагает большие надежды на обуздание ядерных технологий:

  • Планируется, что к 2035 году доля электроэнергии, генерируемой на АЭС, достигнет 60%, а совокупное производство - более 40 гигаватт;
  • Страна не имеет атомного оружия, но исследования по ядерной физике ведутся непрерывно. Корейские ученые разработали проекты современных реакторов: модульные, водородные, с жидким металлом и др.;
  • Успехи местных исследователей позволяют продавать технологии за рубеж. Ожидается, что в ближайшие 15-20 лет страна экспортирует 80 таких установок;
  • Но по состоянию на сегодняшний день большая часть АЭС сооружена при содействии американских или французских ученых;
  • Количество действующих станций относительно невелико (только четыре), но каждая из них располагает значительным числом реакторов - в совокупности 40, причем эта цифра будет расти.

При бомбардировке нейтронами ядерное топливо приходит в цепную реакцию, в результате которой образуется огромное количество тепла. Находящаяся в системе вода забирает это тепло и превращается в пар, который вращает турбины, производящие электричество. Вот простая схема работы атомного реактора, мощнейшего источника энергии на Земле.

Видео: как работают атомные реакторы

В данном ролике физик-ядерщик Владимир Чайкин расскажет, с помощью чего врабатывается электричество в атомных реакторах, их подробное устройство:

Чтобы понять принцип работы и устройство ядерного реактора, нужно совершить небольшой экскурс в прошлое. Атомный реактор – это многовековая воплощенная, пусть и не до конца, мечта человечества о неисчерпаемом источнике энергии. Его древний «прародитель» — костер из сухих веток, однажды озаривший и согревший своды пещеры, где находили спасение от холода наши далекие предки. Позже люди освоили углеводороды – уголь, сланцы, нефть и природный газ.

Наступила бурная, но недолгая эпоха пара, которую сменила еще более фантастическая эпоха электричества. Города наполнялись светом, а цеха – гулом невиданных доселе машин, приводимых в движение электродвигателями. Тогда казалось, что прогресс достиг своего апогея.

Все изменилось в конце XIX века, когда французский химик Антуан Анри Беккерель совершенно случайно обнаружил, что соли урана обладают радиоактивностью. Спустя 2 года, его соотечественники Пьер Кюри и его супруга Мария Склодовская-Кюри получили из них радий и полоний, причем уровень их радиоактивности в миллионы раз превосходил показатели тория и урана.

Эстафету подхватил Эрнест Резерфорд, детально изучивший природу радиоактивных лучей. Так начинался век атома, явивший на свет свое любимое дитя – атомный реактор.

Первый ядерный реактор

«Первенец» родом из США. В декабре 1942 года дал первый ток реактор, которому досталось имя его создателя — одного из величайших физиков столетия Э. Ферми. Три года спустя в Канаде обрела жизнь ядерная установка ZEEP. «Бронза» досталась первому советскому реактору Ф-1, запущенному в конце 1946 года. Руководителем отечественного ядерного проекта стал И. В. Курчатов. Сегодня в мире успешно трудятся более 400 ядерных энергоблоков.

Типы ядерных реакторов

Их основное назначение – поддерживать контролируемую ядерную реакцию, производящую электроэнергию. На некоторых реакторах производятся изотопы. Если кратко, то они представляют собой устройства, в недрах которых одни вещества превращаются в другие с выделением большого количества тепловой энергии. Это своеобразная «печь», где вместо традиционных видов топлива «сгорают» изотопы урана – U-235, U-238 и плутоний (Pu).

В отличии, к примеру, от автомобиля, рассчитанного на несколько видов бензина, каждому виду радиоактивного топлива соответствует свой тип реактора. Их два – на медленных (с U-235) и быстрых (c U-238 и Pu) нейтронах. На большинстве АЭС установлены реакторы на медленных нейтронах. Помимо АЭС, установки «трудятся» в исследовательских центрах, на атомных субмаринах и .

Как устроен реактор

У всех реакторов примерна одна схема. Его «сердце» — активная зона. Ее можно условно сравнить с топкой обычной печки. Только вместо дров там находится ядерное топливо в виде тепловыделяющих элементов с замедлителем – ТВЭЛов. Активная зона находится внутри своеобразной капсулы — отражателе нейтронов. ТВЭЛы «омываются» теплоносителем – водой. Поскольку в «сердце» очень высокий уровень радиоактивности, его окружает надежная радиационная защита.

Операторы контролируют работу установки с помощью двух важнейших систем – регулирования цепной реакции и дистанционной системы управления. Если возникает нештатная ситуация, мгновенно срабатывает аварийная защита.

Как работает реактор

Атомное «пламя» невидимо, так как процессы происходят на уровне деления ядер. В ходе цепной реакции тяжелые ядра распадаются на более мелкие фрагменты, которые, будучи в возбужденном состоянии, становятся источниками нейтронов и прочих субатомных частиц. Но на этом процесс не заканчивается. Нейтроны продолжают «дробиться», в результате чего высвобождается большая энергия, то есть, происходит то, ради чего и строятся АЭС.

Основная задача персонала – поддержание цепной реакции с помощью управляющих стержней на постоянном, регулируемом уровне. В этом его главное отличие от атомной бомбы, где процесс ядерного распада неуправляем и протекает стремительно, в виде мощнейшего взрыва.

Что произошло на Чернобыльской АЭС

Одна из основных причин катастрофы на Чернобыльской АЭС в апреле 1986 года – грубейшее нарушение эксплуатационных правил безопасности в процессе проведения регламентных работ на 4-м энергоблоке. Тогда из активной зоны было одновременно выведено 203 графитовых стержня вместо 15, разрешенных регламентом. В итоге, начавшаяся неуправляемая цепная реакция завершилась тепловым взрывом и полным разрушением энергоблока.

Реакторы нового поколения

За последнее десятилетие Россия стала одним из лидеров мировой ядерной энергетики. На данный момент госкорпорация «Росатом» ведет строительство АЭС в 12 странах, где возводятся 34 энергоблока. Столь высокий спрос – свидетельство высокого уровня современной российской ядерной техники. На очереди — реакторы нового 4-го поколения.

«Брест»

Один из них – «Брест», разработка которого ведется в рамках проекта «Прорыв». Ныне действующие системы разомкнутого цикла работают на низкообогащенном уране, после чего остается большое количество отработанного топлива, подлежащего захоронению, что требует огромных затрат. «Брест» — реактор на быстрых нейтронах уникален замкнутым циклом.

В нем отработанное топливо после соответствующей обработки в реакторе на быстрых нейтронах опять становится полноценным топливом, которое можно загружать обратно в ту же установку.

«Брест» отличает высокий уровень безопасности. Он никогда не «рванет» даже при самой серьезной аварии, очень экономичен и экологически безопасен, поскольку повторно пользуется своим «обновленным» ураном. Его также невозможно использовать для наработки оружейного плутония, что открывает широчайшие перспективы по его экспорту.

ВВЭР-1200

ВВЭР-1200 – инновационный реактор поколения «3+» мощностью 1150 МВт. Благодаря своим уникальным техническим возможностям, он обладает практически абсолютной эксплуатационной безопасностью. Реактор в изобилии оснащен системами пассивной безопасности, которые сработают даже в отсутствии электроснабжения в автоматическом режиме.

Одна из них – система пассивного отведения тепла, которая автоматически активируется при полном обесточивании реактора. На этот случай предусмотрены аварийные гидроемкости. При аномальном падении давления в первом контуре в реактор начинается подача большого количества воды, содержащей бор, которая гасит ядерную реакцию и поглощает нейтроны.

Еще одно ноу-хау находится в нижней части защитной оболочки – «ловушка» расплава. Если все же в результате аварии активная зона «потечет», «ловушка» не позволит разрушиться защитной оболочке и предотвратит попадание радиоактивных продуктов в грунт.