Газовая ацетиленовая сварка. Технология ацетиленовой сварки

Кислородно-ацетиленовая горелка - это доступный и универсальный инструмент, который повсеместно используют для нагрева, сварки, пайки и резки металла. Горелка позволяет достичь очень высоких температур, и для безопасной работы ее необходимо правильно настроить. Для работы с кислородно-ацетиленовой горелкой следует научиться правильно использовать редукторы давления, подключать подачу газа и безопасно зажигать пламя.

Шаги

Часть 1

Подключите редукторы давления

    Закрепите баллоны с кислородом и ацетиленом в вертикальном положении. Если у вас есть тележка для газовых баллонов, поставьте в нее баллоны с кислородом и ацетиленом. В противном случае надежно прикрепите их цепью к верстаку, стене или стойке. Газовые баллоны не должны опрокинуться.

    • Газовые баллоны следует использовать и хранить только в вертикальном положении.
  1. Очистите выпускное отверстие вентиля от скопившейся пыли и грязи. Встаньте так, чтобы выпускное отверстие было направлено в сторону от вас, быстро отверните вентиль на 1/4 оборота и тут же закройте его. Таким образом вы удалите грязь и пыль, которые могли скопиться в вентиле. Его необходимо очистить, иначе мусор может попасть в другие части горелки и помешать ее нормальной работе.

    • Предупреждение: никогда не продувайте вентиль газового баллона рядом с местом сварочных работ, вблизи искр или открытого пламени.
  2. Подсоедините редукторы к кислородному и ацетиленовому баллону. Редукторы показывают, при каком давлении газа вы работаете, они необходимы для безопасного запуска и эксплуатации кислородно-ацетиленовой горелки.

    • Если у редуктора и баллона разные резьбы (то есть они не подходят друг к другу), придется использовать переходник, который можно приобрести в магазине хозяйственных товаров.
  3. Затяните гайки редуктора гаечным ключом. Не думайте, что достаточно как можно туже затянуть гайки голыми руками. Используйте гаечный ключ с фиксированным отверстием (а не разводной), который специально предназначен для сварочных инструментов. Такой ключ можно приобрести в магазине хозяйственных товаров и инструментов.

    • Если вам необходимо что-нибудь отрегулировать после того, как вы откроете газовый баллон, обязательно закрутите вентиль, прежде чем вновь затягивать гайку.
  4. Покрутите регулирующий давление винт влево до тех пор, пока он не будет свободно вращаться. Сделайте это на каждом редукторе. Перед нагнетанием давления клапан редуктора должен быть закрыт. Поверните регулировочный винт против часовой стрелки, чтобы снять давление с пружины редуктора.

    • Когда винт начнет свободно вращаться, достаточно будет не прикладывать к нему значительные усилия, а просто постучать пальцем, чтобы он повернулся.
  5. Очень медленно откройте вентили на кислородном и ацетиленовом баллоне. При этом вам должны быть видны датчики давления на баллоне, однако не следует стоять перед клапанами. Откройте клапаны медленно, чтобы защитить себя и оборудование от возможного возгорания.

    Оставляйте гаечный ключ на ацетиленовом клапане, пока он открыт. В этом случае вам не придется тратить время на поиски подходящего гаечного ключа, если вдруг возникнет чрезвычайная ситуация. Если ключ останется на клапане, вы в любой момент сможете закрыть баллон.

    • Старайтесь держать возле своего рабочего места все необходимые инструменты, чтобы вам не приходилось их искать. Заранее планируйте свою работу и запасайтесь нужными инструментами, прежде чем приступить к ней.

    Часть 2

    Подсоедините газовые баллоны к горелке
    1. Используйте шланги, соединители и переходники, специально предназначенные для сварки и резки. Кислородные шланги имеют зеленое, а ацетиленовые - красное покрытие. Ни в коем случае не меняйте местами эти шланги, так как они предназначены для разных газов. Если один из шлангов порвется, замените его на новый - не пытайтесь залатать поврежденный шланг клейкой лентой.

      • Для ацетилена подойдет шланг с прокладкой из натуральной резины.
    2. Не наносите на шланги масло или смазку. Все соединения подачи газа к горелке имеют контакты металл-металл, для них не требуются смазка или герметики. Также не используйте какие-либо приспособления для монтажа труб, чтобы подсоединить шланги к горелке.

      • Не прикладывайте больших усилий, когда подсоединяете шланги - если резьба не закручивается легко вручную, то она повреждена, либо части не соответствуют друг другу.
    3. Подсоедините кислородный шланг к редуктору на кислородном баллоне и к горелке. На корпусе или ручке горелки должны быть обозначения, которые показывают, куда следует подсоединять шланги. Большинство горелок имеют 2 гнезда для подачи кислорода: одно используется для режущей струи, а второе для пламени подогрева. Если на горелке нет переходника, который соединяет оба эти гнезда, вам потребуется два кислородных шланга, два редуктора давления и два баллона с кислородом.

      • Большинство новых кислородно-ацетиленовых горелок снабжены встроенными переходниками, однако для безопасности лишний раз сверьтесь с приложенными инструкциями.
    4. Подсоедините ацетиленовый шланг к редуктору на баллоне с ацетиленом и к горелке. Иногда на горелке не указывают, какое гнездо предназначено для ацетилена, и четко обозначают лишь подвод для кислорода. В этом случае ацетиленовый шланг нужно подсоединить к тому гнезду, которое не предназначено для подачи кислорода.

      • Еще раз проверьте все соединения, прежде чем продолжать, и убедитесь в том, что все шланги на своих местах.
    5. Затяните шланговые соединения гаечным ключом. Недостаточно закрутить их лишь голыми руками. Возьмите гаечный ключ с фиксированным отверстием и надежно прикрепите кислородный и ацетиленовый шланг к горелке.

      • Необходимо туго затянуть соединения, чтобы не было утечки кислорода или ацетилена.

      Часть 3

      Проверьте герметичность соединений
      1. Закройте оба клапана на горелке. Поверните регулировочный винт на редукторе с кислородным баллоном так, чтобы манометр показывал около 1 атмосферы. На баллоне с ацетиленом установите регулятор так, чтобы на манометре было примерно 0,7 атмосферы.

        • Прежде чем приступить к работе, необходимо проверить, нет ли течей. Утечка газа может нанести вред вам и окружающим вас людям или привести к возгоранию.
      2. Нанесите кистью раствор для обнаружения утечек. Нанесите раствор на клапаны баллонов, места соединения баллонов с редукторами и все шланговые соединения. Раствор для обнаружения утечек можно приобрести в магазине хозяйственных товаров или приготовить самому: для этого просто разведите в воде мыло, чтобы получился достаточно густой пенный раствор.

        • Подойдет любая рабочая кисть, лишь бы она не была в масле или бензине.
      3. Проверьте, не пузырится ли раствор. Выделяющиеся пузырьки указывают на то, что через данное место проходит кислород или ацетилен, и протекающее соединение необходимо туже затянуть или полностью заменить. Пузырьки будут небольшими, примерно как при кипении воды, а то и меньше, и вы заметите их по тому, что поверхность проверочного раствора станет неровной на вид.

        • После нанесения раствора подождите 1–2 минуты, чтобы он как следует смочил поверхность, прежде чем смотреть, есть ли течь.
      4. Сбросьте давление в той системе, где есть утечка газа. Заново соберите соединение или туже затяните гайки и еще раз нанесите проверочный раствор. После проверки не забудьте перекрыть вентили на кислородном и ацетиленовом баллоне.

        • Если после проверки и повторного закрепления протекающих участков проверочный раствор вновь выделяет пузырьки, это может указывать на то, что у вас негерметичный шланг, и необходимо приобрести новый, прежде чем продолжить работу.

      Часть 4

      Получите нужное рабочее давление
      1. Поверните регулировочный винт на редукторе с кислородным баллоном. Медленно поворачивайте винт, пока не достигнете нужного давления. Вы увидите значение давления на выходном манометре. После этого закройте кислородный клапан на горелке. Если вы используете горелку для резания, откройте только кислородный клапан для резки. Если вы используете головку для резки, откройте кислородный клапан на ручке горелки и кислородный клапан для резки на головке.

        • Не устанавливайте давление выше, чем рекомендовано в приложенных к горелке инструкциях.
      2. Выставьте регулировочный винт на редукторе с ацетиленовым баллоном, чтобы получить нужное давление. Не превышайте 1 атмосферы. Когда давление достигнет нужного значения, сразу же закройте ацетиленовый клапан. Не открывайте вентиль больше чем на один полный оборот.

Путь к IT у всех бывает очень тернистый. Я например в детстве хотел быть сварщиком - это же так красиво, когда вокруг летят брызги расплавленного металла! Но как-то не сложилось: мне начали выписывать журнал «Юный техник», где на последней странице одного из номеров рассказывали про робота, управляемого компьютером БК-0010… Но пунктик-то остался…

Также кто-то наверняка помнит передачу «Очумелые ручки», где из пластиковых бутылок делали различные креативные (как бы сказали сейчас) вещи.

Под катом - я покажу, как из пластиковой бутылки, инсулинового шприца, нескольких метров резинового шланга, клеевого пистолета (куда же без него) и некоторых других вещей, которые можно найти в каждом доме* сделать самую настоящую кислородно-ацетиленовую сварку.

Теория

Температура пламени зависит от теплоты сгорания топлива и теплоемкости продуктов реакции. Когда мы сжигаем что-то в воздухе - нагревать приходится и азот (которого почти 80%), потому температура пламени в воздухе обычно не высокая (~1500-2000C и ниже). А вот в чистом кислороде, при правильном соотношении объема горючего и кислорода - греть нужно только продукты реакции, и достижимы намного более высокие температуры.

Как топливо обычно рассматривают углеводороды. Углерод при сгорании дает углекислый газ, а водород - воду. Вода имеет очень большую теплоемкость (4.183 против 1.4 кДж/(кг*К)), соответственно, чем больше в горючем будет углерода, и меньше водорода - тем выше в первом приближении потенциально достижимая температура.

Наилучшее сочетание - у ацетилена C 2 H 2 , а например у метана CH 4 и пропана C 3 H 8 - это соотношение намного хуже.

Но существуют и другие соединения с равным количеством углерода и водорода - например бензол, C 6 H 6 . Помимо токсичности бензола, при его сгорании выделяется меньше энергии, т.к. в ацетилене «лишняя» энергия запасена в нестабильной тройной углеродной связи, что и обеспечивает ему одну из наибольших температур горения в кислороде - 3150 °C.

Эта лишняя энергия (~16%) может выделится во время самопроизвольной детонации сжатого ацетилена даже без доступа воздуха (продуктом реакции будет как раз бензол и винилацетилен). Wikipedia утверждает, что для этого нужно давление всего в 2 атмосферы - но я в шприце сжимал ацетилен до 4-5 атмосфер и ничего не происходило (видимо нужны катализаторы, удар или повышенная температура). В любом случае, из-за этого эффекта ацетилен в сжатом виде не хранят, а растворяют его в баллонах в ацетоне. Но есть и более простой и безопасный при маленьких объемах способ получения ацетилена - реакция карбида кальция с водой. Именно этот способ и будет использоваться.

Что примечательно, достигнуть еще бОльшей температуры можно - если использовать как топливо вещества, не содержащие водорода вообще: cyanogen (привет Android), (CN) 2 - горит при 4525 °C и dicyanoacetylene C 4 N 2 , горит при 4990 °C (опять благодаря тройным углеродным связям, и меньшему относительному количеству лишнего азота). Но практически с этой целью их не используют из-за токсичности.

Безопасность

Сжатые кислород и ацетилен в баллонах - могут быть очень опасны при малейших нарушениях правил эксплуатации, потому их я конечно использовать не буду.

Ацетилен будет генерироваться из небольшого количества карбида кальция (~100г на одну сессию), в бутылке объемом 0.5л. Изначально я хотел использовать 2л, чтобы давление было более равномерное - но посмотрев на YouTube как взрывается литр ацетилена с кислородом - решил урезать осетра. Чтобы не создавалось опасного давление в генераторе - выход ацетилена на горелке никогда нельзя перекрывать. Генератор ацетилена нужно охлаждать - иначе будет «саморазгон» реакции из-за нагрева.

Кислород - будет генерироваться медицинским концентратором кислорода, что относительно безопасно.

Могла быть еще опасность накачать кислорода в генератор ацетилена с последующим хлопком - но для этого нужно, чтобы не сработал защитный клапан в генераторе кислорода, и был заблокирован (грязью например) выход газа из горелки.

И конечно работать нужно в специальных очках - не только для защиты от брызг металла, но и ультрафиолетового излучения пламени (т.е. прозрачные пластиковые защитные очки тут не подойдут).

Чтобы не допустить скапливания взрывоопасной концентрации ацетилена в случае утечек - вентилятор постоянно обдувал рабочее место + все операции проводились на открытом воздухе.

Также существует проблема «обратного удара»: когда скорость течения газа в горелке становится слишком маленькая, пламя уходит внутрь горелки с хлопком, и если в ацетилене есть воздух - пламя может дойти до генератора ацетилена. Потому я не поджигал ацетилен сразу после начала реакции, а ждал ~15-30 секунд пока воздух не будет вытеснен. Также эта проблема может быть решена добавлением водяного клапана на пути ацетилена.

Конструкция

Итак, нам понадобится генератор кислорода. В моем случае - медицинский кислородный концентратор Atmung (цена порядка 20к рублей - но он, к счастью, уже был в наличии). Может генерировать 1 литр в минуту 95% кислорода, и бОльшие объемы при снижении концентрации. Работает по принципу короткоцикловой безнагревной адсорбции - за счет различной скорости прохождения газов через поры цеолита:

Далее - стандартная ацетиленовая горелка «Малютка», у неё самое маленькое сопло, куплена в интернет-магазине (960 рублей):

Мой генератор ацетилена работает следующим образом: вода из банки, стоящей на высоте 1-2 метра (для создания давления) через иглу инсулинового шприца маленькими каплями капает на карбид кальция в бутылке. Как только давление вырастает из-за выделившегося газа - вода капать перестает, до тех пор пока давление не снизится. Таким образом система стабилизирует сама себя. Тем не менее, генератор в банке с холодной водой - чтобы не допустить излишнего нагрева:

Результат

Пламя ацетилена в воздухе сильно коптит, и выглядит вполне заурядно:

С включением кислорода все меняется:

Можно плавить и поджигать сталь, резать все-таки не хватает мощности (надо брать более толстый наконечник, увеличивать давление):

Оказалось, гибкое стеклянное «оптоволокно» получается автомагически - когда расплавленное стекло капает, как только толщина шейки становится достаточно маленькой, оно очень быстро остывает и дальше не утончается.

Можно плавить стекло как масло, запаивать капсулы из стеклянных трубок:

Задача жизни выполнена, надеюсь и вам было интересно:-)

PS. И не повторяйте это дома.

Дополнение от специалиста (@freuser):

С точки зрения профессионального сварщика (30 лет, 11 стажа, из них 2 именно газосварка):
Статья гожая, в общем дисклеймеры правильные. Стоит добавить, что работы ведутся на несгораемых поверхностях (искры летят метра на 2 от ветра, а капли металла даже потемневшие до обычных цветов могут прожечь обувь, если она является туфлями.)

Конструкция генератора называется ВК (вода на карбид), есть еще КВ и ВВ (гуглится со схемами, копирайт еще советский:)).

К видео комментариев нет, особо и смотреть нечего (с моей точки зрения), только стоит добавить, что большие стекла (или целые бутылки), а также камень/бетон/некоторые кирпичи при нагревании могут лопнуть/расслоиться с образованием низколетящих осколков, которые замечательно впиваются и вплавляются в кожу (особенно на лице), правда, на миллиметр, не более, и легко вынимаются оттуда.

Еще хотел бы ответить именно на habrahabr.ru/post/185720/#comment_6461342 : это не обратный удар, вернее не то, от чего предостерегал Nepherhotep, а просто горелка либо перегрелась, либо, скорее, от малого давления и близкого от сопла препятствия (либо засора внутри сопла) пламя пошло навстречу потоку, к инжектору (в этой горелке он под накидной гайкой, между ней и вентилями), но дальше не двинулось. А обычно под обратным ударом понимается случай, когда пламя проскочило инжектор и пошло по шлангу навстречу источнику. Бывает два вида обратных ударов (один я наблюдал воочию): пламя идет по ацетиленовому шлангу (обычное горение, только конец шланга постоянно обгорает и пламя движется равномерно к баллону/генератору) и по кислородному (тут все красивее - шланг вдруг 20-30-сантиметровым куском вспыхивает и превращается в лохмотья, секундная пауза - следующий отрезок и т.д. до самого баллона.) Хотя второй случай - редкость. Простейшая защита - пережимаешь шланг в отдалении, придавливаешь ногой (не забываем про туфли) и орешь напарнику «Санька, баллоны закрывай, *** !!» Для более цивильной защиты можно сделать водяные затворы - тоже бутылка, две трубки, одна до дна - входящая, вторая короткая - на горелку. До половины наливается водой и все, пузырьки красиво бегут))

Теги:

  • ацетилен
  • кислород
  • жжем напалмом
  • cyanogen
Добавить метки

Чтобы понять, где применяется ацетилен, необходимо изучить и понять, что же это такое. Данное вещество представляет собой горючий бесцветный газ. Его химическая формула - С 2 Н 2 . Газ обладает атомной массой, равной 26,04. Он немного легче воздуха и обладает резким запахом. Получение и применение ацетилена осуществляется лишь в промышленных условиях. Получают данное вещество из путем разложения компонента в воде.

Чем опасен ацетилен

Ограничено его необычайными свойствами. самовоспламеняется. Происходит это при температуре 335°С, а его смесь с кислородом - при температуре от 297 до 306°С, с воздухом - при температуре от 305 до 470°С.

Стоит отметить, что ацетилен технический взрывоопасен. Это было происходит при:

  1. Повышении температуры до 450-500°С, а также при давлении в 150-200 кПа, что равно 1,5-2 атмосферам.
  2. Смесь ацетилена и кислорода при атмосферном давлении также опасна, если ацетилена в ней содержится 2,3-93%. Взрыв может произойти от сильного нагрева, открытого пламени и даже от искры.
  3. При подобных же условиях происходит взрыв смеси воздуха с ацетиленом, если в ней содержится 2,2-80,7 % ацетилена.
  4. Если газ долго соприкасается с медным или серебряным предметом, то может образоваться ацетиленистое взрывчатое серебро или же медь. Это вещество очень опасно. Взрыв может произойти от сильного удара или же в результате повышения температуры. Работать с газом следует осторожно.

Особенности вещества

Ацетилен, свойства и применение которого до конца не изучены, в результате взрыва может привести к несчастному случаю и сильнейшим разрушениям. Вот некоторые данные. При взрыве одного килограмма данного вещества выделяется в 2 раз больше тепловой энергии, чем при взрыве такого же количества тротила, а также в полтора раза больше, чем при взрыве одного килограмма нитроглицерина.

Области применения ацетилена

Ацетилен - это горючий газ, который используется при газовой сварке. Нередко его используют для кислородной резки. Стоит отметить, что температура горения смеси кислорода и ацетилена может достигать 3300°С. Благодаря этому свойству вещество чаще других используется при сварке. Ацетиленом обычно заменяют и пропан-бутан. Вещество обеспечивает производительность и высокое качество сварки.

Снабжение постов газом для резки и сварки может осуществляться от или же от баллонов с ацетиленом. Для хранения данного вещества обычно используют емкости белого цвета. Как правило, на них присутствует надпись «Ацетилен», нанесенная красной краской. Стоит учесть, что существует ГОСТ 5457-75. Согласно данному документу для обработки металлов применяется технический растворенный ацетилен марки Б или же вещество в газообразном виде.

Сварка ацетиленом: проверка

Технология сварки данным газом достаточно проста. Однако при работе с веществом требуется терпение и внимательность. Для сварки обычно используют специальные горелки, с маркировкой 0-5. Ее выбор зависит от того, какой толщиной обладают свариваемые детали. Следует учесть, что чем больше размер горелки, тем больше расход.

Сварка ацетиленом осуществляется только после того, как оборудование будет проверено и отрегулировано. При этом следует обратить внимание на номер наконечника и номер подающей газ форсунки, которая располагается около рукоятки горелки под гайкой. Также следует проверить все уплотнения.

Процесс сварки

Применение ацетилена при сварке должно осуществляться аккуратно и в соответствии с определенными правилами. Для начала горелку следует продуть газом. Это нужно делать до тех пор, пока не появится запах ацетилена. После этого газ поджигается. При этом следует добавлять кислород, пока пламя не станет более устойчивым. Из редуктора на выходе давление ацетилена должно быть от 2 до 4 атмосфер, а кислорода - от 2 атмосфер.

Для сварки черных металлов требуется нейтральное пламя. Оно обладает четко очерченной короной и условно его можно разделить на три яркие части: ядро - ярко-голубой окрас с зеленоватым отливом, восстановленное пламя - бледно-голубого оттенка, факел пламени. Последние две зоны являются рабочими.

Перед началом работы все детали нужно очистить, а затем подогнать друг к другу. При работе с горелкой также применяют левый и правый способ. В последнем случае происходит медленное остывание шва. Присадочный материал, как правило, перемещается за горелкой. При левом способе повышается эластичность и прочность шва. В данном случае пламя направляется от места сварки. Присадочный материал следует вносить в сварочную ванну только после того, как переместится на следующую позицию горелка.

Правила безопасности

Применение ацетилена без навыков и опыта запрещено. Существует несколько правил, которые следует соблюдать при работе с веществом:

Что делать, если возник пожар

Неправильное применение ацетилена может привести к печальным последствиям. Этот и приносит сильное разрушение. Что же делать, если возник пожар?

  1. При возникновении пожара следует незамедлительно убрать из опасной зоны все емкости, наполненные ацетиленом. Те баллоны, которые остались, следует постоянно охлаждать обычной водой или же специальным составом. Емкости должны полностью остыть.
  2. Если воспламенился газ, который выходит из баллона, то следует незамедлительно закрыть емкость. Для этого следует использовать неискрящийся ключ. После этого емкость необходимо остудить.
  3. При сильном возгорании тушение огня следует осуществлять только с безопасного расстояния. В такой ситуации стоит использовать огнетушители, наполненные составом, содержащим флегматизирующую концентрацию азота 70 % по объему, также 75 % по объему, песок, струи воды, сжатый азот, полотно асбестовое и так далее.


Теория
Температура пламени зависит от теплоты сгорания топлива и теплоемкости продуктов реакции. Когда мы сжигаем что-то в воздухе - нагревать приходится и азот (которого почти 80%), потому температура пламени в воздухе обычно не высокая (~1500-2000C и ниже). А вот в чистом кислороде, при правильном соотношении объема горючего и кислорода - греть нужно только продукты реакции, и достижимы намного более высокие температуры.
Как топливо обычно рассматривают углеводороды. Углерод при сгорании дает углекислый газ, а водород - воду. Вода имеет очень большую теплоемкость (4.183 против 1.4 кДж/(кг*К)), соответственно, чем больше в горючем будет углерода, и меньше водорода - тем выше в первом приближении потенциально достижимая температура.
Наилучшее сочетание - у ацетилена C2H2, а например у метана CH4 и пропана C3H8 - это соотношение намного хуже.
Но существуют и другие соединения с равным количеством углерода и водорода - например бензол, C6H6. Помимо токсичности бензола, при его сгорании выделяется меньше энергии, т.к. в ацетилене "лишняя" энергия запасена в нестабильной тройной углеродной связи, что и обеспечивает ему одну из наибольших температур горения в кислороде - 3150 °C.
Эта лишняя энергия (~16%) может выделится во время самопроизвольной детонации сжатого ацетилена даже без доступа воздуха (продуктом реакции будет как раз бензол и винилацетилен). Wikipedia утверждает, что для этого нужно давление всего в 2 атмосферы - но я в шприце сжимал ацетилен до 4-5 атмосфер и ничего не происходило (видимо нужны катализаторы, удар или повышенная температура). В любом случае, из-за этого эффекта ацетилен в сжатом виде не хранят, а растворяют его в баллонах в ацетоне. Но есть и более простой и безопасный при маленьких объемах способ получения ацетилена - реакция карбида кальция с водой. Именно этот способ и будет использоваться.
Что примечательно, достигнуть еще бОльшей температуры можно - если использовать как топливо вещества, не содержащие водорода вообще: cyanogen (привет Android), (CN)2 - горит при 4525 °C и dicyanoacetylene C4N2, горит при 4990 °C (опять благодаря тройным углеродным связям, и меньшему относительному количеству лишнего азота). Но практически с этой целью их не используют из-за токсичности.

Безопасность
Сжатые кислород и ацетилен в баллонах - могут быть очень опасны при малейших нарушениях правил эксплуатации, потому их я конечно использовать не буду.
Ацетилен будет генерироваться из небольшого количества карбида кальция (~100г на одну сессию), в бутылке объемом 0.5л. Изначально я хотел использовать 2л, чтобы давление было более равномерное - но посмотрев на YouTube как взрывается литр ацетилена с кислородом - решил урезать осетра. Чтобы не создавалось опасного давление в генераторе - выход ацетилена на горелке никогда нельзя перекрывать. Генератор ацетилена нужно охлаждать - иначе будет "саморазгон" реакции из-за нагрева.
Кислород - будет генерироваться медицинским концентратором кислорода, что относительно безопасно.
Могла быть еще опасность накачать кислорода в генератор ацетилена с последующим хлопком - но для этого нужно, чтобы не сработал защитный клапан в генераторе кислорода, и был заблокирован (грязью например) выход газа из горелки.
И конечно работать нужно в специальных очках - не только для защиты от брызг металла, но и ультрафиолетового излучения пламени (т.е. прозрачные пластиковые защитные очки тут не подойдут).
Чтобы не допустить скапливания взрывоопасной концентрации ацетилена в случае утечек - вентилятор постоянно обдувал рабочее место + все операции проводились на свежем воздухе.
Также существует проблема "обратного удара" (в видео в конце статьи показан на 1:30): когда скорость течения газа в горелке становится слишком маленькая, пламя уходит внутрь горелки с хлопком, и если в ацетилене есть воздух - пламя может дойти до генератора ацетилена. Потому я не поджигал ацетилен сразу после начала реакции, а ждал ~15-30 секунд пока воздух не будет вытеснен. Также эта проблема может быть решена добавлением водяного клапана на пути ацетилена.

Конструкция
Итак, нам понадобится генератор кислорода. В моем случае - медицинский кислородный концентратор Atmung (цена порядка 20к рублей - но он, к счастью, уже был в наличии). Может генерировать 1 литр в минуту 95% кислорода, и бОльшие объемы при снижении концентрации. Работает по принципу короткоцикловой безнагревной адсорбции - за счет различной скорости прохождения газов через поры цеолита:


Далее - стандартная ацетиленовая горелка "Малютка", у неё самое маленькое сопло, куплена в интернет-магазине (960 рублей):


Мой генератор ацетилена работает следующим образом: вода из банки, стоящей на высоте 1-2 метра (для создания давления) через иглу инсулинового шприца маленькими каплями капает на карбид кальция в бутылке. Как только давление вырастает из-за выделившегося газа - вода капать перестает, до тех пор пока давление не снизится. Таким образом система стабилизирует сама себя. Тем не менее, генератор в банке с холодной водой - чтобы не допустить излишнего нагрева:

Результат
Пламя ацетилена в воздухе сильно коптит, и выглядит вполне заурядно:

С включением кислорода все меняется:


Можно плавить и поджигать сталь, резать все-таки не хватает мощности (надо брать более толстый наконечник, увеличивать давление):


Оказалось, гибкое стеклянное "оптоволокно" получается автомагически - когда расплавленное стекло капает, как только толщина шейки становится достаточно маленькой, оно очень быстро остывает и дальше не утончается.


Можно плавить стекло как масло, запаивать капсулы из стеклянных трубок:

Видео самодельного кислородно-ацетиленового сварочного аппарата:

Ацетиленовая сварка представляет собой вид газопламенной сварки. Начало ее широкого применения в промышленности для термического соединения металлов пришлось на начало прошлого века. А вот к концу того же столетия наметилось заметное падение использования как газопламенной сварки вообще, так и на ее разновидности на основе ацетилена, что вполне объективно обусловлено технологическим прогрессом, выразившимся в развитии и доступности других видов и способов сварки металлов.

Принцип работы газопламенной сварки основан на высокотемпературном горении газов, в основном таких, как углеводороды с добавлением чистого кислорода.

При применении ацетиленовой сварки используется искусственный газ ацетилен, что при переводе с латыни, по иронии судьбы, означает уксус.

Вся особенность ацетилена, как химического вещества, заключается в строении его молекулы C2H2, которая имеет, кроме двух слабых водородных связей, еще и неустойчивую, но высокоэнергетическую тройную связь между атомами углерода.

Ацетилен получается при простой химической реакции карбида кальция СаС2 с водой. А вот само производство карбида кальция имеет довольно дешевый, с точки зрения промышленного производства, способ. Его получают путем прокаливания негашеной извести СаО и кокса (практически чистого углерода) в специальных печах. Получаемое при этом серое вещество с характерным запахом чеснока и является необходимым сырьем для дальнейшего получения газа ацетилена.

Особенности технологии

Дешевизна промышленного производства исходного сырья в виде карбида кальция и высокая температура пламени при горении с чистым кислородом в 3150⁰ C стали определяющими факторами в превосходстве ацетиленовой сварки над другими видами газопламенной сварки.

Так, при сравнении температуры горения ацетилена и других газов, хорошо вырисовывается его явное преимущество перед ними:


Приведем еще несколько особенностей ацетилена, выраженных в его свойствах:

  • температура кипения составляет -83⁰ C, что способствует сравнительно легкому хранению в сжатом или сжиженном состоянии;
  • при температуре в -90⁰ C ацетилен затвердевает;
  • хорошо растворяется в воде и полностью поглощается органическими растворителями;
  • может самопроизвольно взрываться при превышении температуры в 500⁰ C и при достижении давления в 2 атмосферы, но при определенных условиях.

Плюсы и минусы

Одной из особенностей использования газопламенной сварке на основе ацетилена является наличие большого количества как достоинств, так и недостатков.

Accounts

Free Trial

Free Trial

Free Trial

Free Trial

Free Trial

Free Trial

Плюсы оборудования

самая высокая температура пламени горения смеси с чистым кислородом

возможность использования в полевых условиях за счет простого способа получения горючего газа на специальных генераторах непосредственно в месте проведения сварочных работ

способность сваривать чугун, медь, латунь и бронзу

возможность применения для соединения различных видов металлов, имеющих разные температуры плавления

универсальность, работает с разными металлами

возможность плавной регулировки температуры пламени

в сравнении с другими газами для газопламенной сварки, ацетилен является наиболее эффективным

Минусы оборудования

необходимость в высококвалифицированном сварщике и опыте работы с газопламенной сваркой

высокая взрывоопасность, отсюда - особые условия по технике безопасности

возможность возникновения пережогов и перегревов из-за большой зоны термического нагрева, приводящих к значительным деформациям свариваемых деталей

эффективен только при сварке изделий до 5 мм толщиной

нет возможности механизировать и автоматизировать процессы газопламенной сварки

большая загазованность места проведения работ

невозможно обеспечить качественное соединение высоколегированных сталей

Оборудование для ацетиленовой сварки

Так как процесс ацетиленовой сварки основывается на горении смеси газов один, из которых ацетилен, а другой - кислород, то для возможности проведения такого технологического процесса потребуется:

  • Емкость для хранения кислорода. При мобильной версии оборудования - это стандартный кислородный баллон сине-голубого цвета для хранения и транспортировки сжатого кислорода на 40 л. Причем существует и более облегченная версия на 10 л. На промышленном производстве, при наличии собственной кислородной станции, подачу кислорода осуществляют по системе кислородопроводов.
  • Емкость для генерации или хранения ацетилена. Для этого в одном варианте использовались стандартные баллоны для хранения и транспортировки сжатого газа серого цвета или сниженного, но уже красного цвета. В этом случае ацетилен вырабатывался промышленным способом, а баллоны заправлялись на специальных газогенераторных станциях.

Но наиболее широкое распространение имели так называемые газогенераторы, которые служили для генерации ацетилена непосредственно на месте проведения сварочных работ из карбида кальция. Такой аппарат представлял собой небольшую герметичную емкость, в свою очередь состоящую из двух объемных отделений: внешнего и внутреннего, имеющих общую нижнюю полость.

Работа такого генератора происходила гениально просто. На дно аппарата заливалась вода до определенного уровня, а во внутреннее отделение помещалась металлическая корзина с кусками карбида кальция так, чтобы низ корзины погрузился в воду для начала химической реакции. Далее, емкость генератора герметично закрывалась и генерируемый газ для сварки забирался из специального патрубка. В случае, если разбор газа отставал от объемов выработки, образовавшийся «лишний» газ во внутреннем объеме, создавая избыточное давление, выдавливал воду во внешний объем, чем обезвоживал корзину с карбидом и останавливал процесс генерации ацетилена. Во время проведения сварочных работ такой ход процессов в генераторе повторялся неоднократно.

  • Дополнительное газобаллонное оборудование, состоящее из резиновых кислородных шлангов, как правило, рассчитанных на 10-16 атм и газовых редукторов для каждого вида газа в отдельности. Причем ацетиленовый редуктор имел черный цвет и все резьбовые соединения левосторонней направленности, а вот кислородное оборудование было синего цвета и могло накручиваться только правосторонней резьбой.

Эта резьбовая особенность разделения принадлежности оборудования к тому или иному газу была сделана в целях техники безопасности, чтобы при подготовке к работе сварщик случайно не перепутал шланги и редуктора, так как это могло привести к аварийной ситуации.

  • Сварочные горелки, представляющие собой систему трубок с запорно-регулирующими кранами, смесительной камерой и соплом. Так же, как и на редукторах, каждый вид газа имеет свой собственный штуцер с левой или правой резьбой соответственно.

В основном применялись газопламенные горелки с номерами от «0» до «5», что определяло их рабочие возможности по интенсивности истечения газов и силе пламени. Так, нулевой номер применялся для самых тонких деталей, а четвертый и пятый номера были, по сути, уже газовыми резаками и применялись для соединения металла толщиной в 4-5 мм или для различных металлических конструкций.

Сегодня этот вид сварки практически уходит в небытие, оставляя за собой прочные позиции в ювелирной промышленности и точном приборостроении.

А раньше, в 70-90 годах прошлого столетия, ацетиленовый генератор, сделанный своими руками из баллона обычного углекислотного огнетушителя, был одним из самых распространенных и доступных сварочных аппаратов для ремонта кузовов автомобилей в условиях простого гаража.

Если у вас есть свой опыт использования ацетиленовой сварки, то поделитесь им в блоке комментариев.