Электронная формула mg. Электронные формулы и электронно-графические схемы

Согласно представлениям Гейтлера и Лондона, валентность элементов определяется числом неспаренных электронов. Рассмотрим электронно-графические формулы некоторых элементов, в которых орбитали представляют в виде ячеек- квадратов, а электрон в виде стрелок + ½; -1/2.

Из этих формул следует, что в нормальном (неспаренном) состоянии углерод имеет II валентность, Sc – I.Атомы могут переходить в возбуждённое состояние, при котором с ниже лежащих подуровней могут переходить выше лежащие пустые подуровне (в пределах одного подуровня).

6. Периодический закон и периодическая система д.И. Менделеева Структура периодической системы (период, группа, подгруппа). Зна­чение периодического закона и периодической системы.

Периодический закон Д. И. Менделеева: Свойства простых тел , а также формы и свойства соеди­ нений элементов находятся в периодической зависимости от величины атомных весов элементов .(Свойства эл-тов находятся в периодической зависимости от заряда атомов их ядер).

Периодическая система элементов. Ряды элементов, в пре­делах которых свойства изменяются последовательно, как, напри­мер, ряд из восьми элементов от лития до неона или от натрия до аргона, Менделеев назвал периодами. Если напишем эти два периода один под другим так, чтобы под литием находился натрий, а под неоном - аргон, то получим следующее расположение эле­ментов:

При таком расположении в вертикальные столбцы попадают элементы, сходные по своим свойствам и обладающие одинаковой валентностью, например, литий и натрий, бериллий и магний и т. д.

Разделив все элементы на периоды и располагая один период под другим так, чтобы Сходные по свойствам и типу образуемых соединений элементы приходились друг под другом, Менделеев со­ставил таблицу, названную им периодической системой элементов по группам и рядам.

Значение периодической систе мы. Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они обра­зуют стройную систему и находятся в тесной связи друг с дру­гом, но и явилась могучим орудием для дальнейших исследо­ваний.

7. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.

Зависимость атомных радиусов от заряда ядра атома Z имеет периодический характер. В пределах одного периода с увеличе­нием Z проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах

С началом застройки нового электронного слоя, более удален­ного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются.

Потеря атомов электронов приводит к уменьшению его эф­фективных размеров, а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего электронейтрального атома.

В пределах одной подгруппы радиусы ионов одинакового за­ряда возрастают с увеличением заряда ядра Такая закономерность объясняется увеличением числа элек­тронных слоев и растущим удалением внешних электронов от ядра.

Наиболее ха­рактерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, харак­теризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превраще­нием последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации.

Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наи­меньшее напряжение поля, при котором скорость электронов ста­новится достаточной для ионизации атомов, называется потен­циалом ионизации атомов данного элемента и выражается в вольтах.

При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потен­циале ионизации (энергия отрыва от атома первого элек­трона).втором потенциале ионизации (энергия отрыва второго электрона)

Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоедине­нии электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода-1,47 эВ, фтора -3,52 эВ.

Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов боль­шинства металлов присоединение электронов энергетически невы­годно. Сродство же к электрону атомов неметаллов всегда поло­жительно и тем больше, чем ближе к благородному газу распо­ложен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.

"

Расположение электронов на энергетических оболочках или уровнях записывают с помощью электронных формул химических элементов. Электронные формулы или конфигурации помогают представить структуру атома элемента.

Строение атома

Атомы всех элементов состоят из положительно заряженного ядра и отрицательно заряженных электронов, которые располагаются вокруг ядра.

Электроны находятся на разных энергетических уровнях. Чем дальше электрон находится от ядра, тем большей энергией он обладает. Размер энергетического уровня определяется размером атомной орбитали или орбитального облака. Это пространство, в котором движется электрон.

Рис. 1. Общее строение атома.

Орбитали могут иметь разную геометрическую конфигурацию:

  • s-орбитали - сферические;
  • р-, d и f-орбитали - гантелеобразные, лежащие в разных плоскостях.

На первом энергетическом уровне любого атома всегда располагается s-орбиталь с двумя электронами (исключение - водород). Начиная со второго уровня, на одном уровне находятся s- и р-орбитали.

Рис. 2. s-, р-, d и f-орбитали.

Орбитали существуют вне зависимости от нахождения на них электронов и могут быть заполненными или вакантными.

Запись формулы

Электронные конфигурации атомов химических элементов записываются по следующим принципам:

  • каждому энергетическому уровню соответствует порядковый номер, обозначаемый арабской цифрой;
  • за номером следует буква, означающая орбиталь;
  • над буквой пишется верхний индекс, соответствующий количеству электронов на орбитали.

Примеры записи:


Задача 56.
Напишите электронно-графическую формулу для элементов 4-го периода, определите их валентные электроны и охарактеризуйте их с помощью квантовых чисел.
Решение:
Электронные формулы отображают распределение электронов в атоме по энергетическим уровням, подуровням (атомным орбиталям). Электронная конфигурация обозначается группами символов nl x , где n – главное квантовое число, l – орбитальное квантовое число (вместо него указывают соответствующее буквенное обозначение – s, p, d, f ), x – число электронов в данном подуровне (орбитали). При этом следует учитывать, что электрон занимает тот энергетический подуровень, на котором он обладает наименьшей энергией – меньшая сумма n+1 (правило Клечковского ). Последовательность заполнения энергетических уровней и подуровней следующая:

1s 2s 2р 3s 3р 4s 3d 4р 5s 4d 5р 6s (5d1) 4f 5d 6р 7s (6d1-2) 5f 6d 7р

а) Элемент № 19
Так как число электронов в атоме того или иного элемента равно его порядковому номеру в таблице Д.И. Менделеева, то для 19 элемента - калия (К – порядковый № 19) электронная формула имеет вид:

Валентный электрон калия 4s 1 - находятся на 4s -подуровне На валентной орбитали атома К находится 1 электрон. Поэтому элемент помещают в первую группу периодической системы Д.И.Менделеева.

б) Элемент № 20
Для элемента № 20 - кальция (Са – порядковый № 20) электронная формула имеет вид:

Валентные электроны кальция 4s 2 - находятся на 4s -подуровне На валентной орбитали атома Са находятся 2 электрона. Поэтому элемент помещают во вторую группу периодической системы Д.И.Менделеева.

в) Элемент № 21
Для элемента № 21 - скандия (Са – порядковый № 21) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1

Валентные электроны скандия 4s 2 3d 1 - находятся на 4s - и 3d -подуровнях. На валентных орбиталях атома Sc находится 3 электрона. Поэтому элемент помещают в третью группу периодической системы Д.И.Менделеева.

г) Элемент № 22
Для элемента № 22 - титана (Ti – порядковый № 22) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2

Валентные электроны скандия 4s 2 3d 2 - находятся на 4s- и 3d- подуровнях. На валентных орбиталях атома Ti находится 4 электрона. Поэтому элемент помещают в четвертую группу периодической системы Д.И.Менделеева.

д) Элемент № 23
Для элемента № 23 - ванадия (V – порядковый № 23) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3

Валентные электроны скандия 4s 2 3d 3 - находятся на 4s- и 3d- подуровнях. На валентных орбиталях атома V находится 5 электронов. Поэтому элемент помещают в пятую группу периодической системы Д.И.Менделеева.

е) Элемент № 24
Для элемента- хрома (Cr – порядковый № 24) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5

Валентные электроны хрома 4s 1 3d 5 - находятся на 4s- и 3- подуровнях. На валентных орбиталях атома Cr находится 6 электронов. Поэтому элемент помещают в шестую группу периодической системы Д.И.Менделеева.
У атома хрома один электрон с 4s-подуровня переходит на 3d-подуровень и при этом атом хрома приобретает более устойчивое состояние 4s 1 3d 5 , чем 4s 2 3d 4 . Объясняется это тем, что энергетически выгоднее для атома хрома когда на 3d-подуровне будет находиться не 4 а 5 электронов - все ячейки заполнены по одному электрону. Таким образом, атому хрома энергетически выгоднее валентная электроная конфигурация 4s 1 3d 5 , а не 4s 2 3d 4 .

ж) Элемент № 25 - марганец (Mn – порядковый № 25) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5

Валентные электроны марганца 4s 2 3d 5 - находятся на 4s- и 3d- подуровнях. На валентных орбиталях атома Mn находится 7 электронов. Поэтому элемент помещают в седьмую группу периодической системы Д.И.Менделеева.

з) Элемент № 26 - железо (Fe – порядковый № 26) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6

Валентные электроны железа 4s 2 3d 6 - находятся на 4s- и 3d -подуровнях. На валентных орбиталях атома Fe находится 8 электронов. Поэтому элемент помещают в восьмую группу периодической системы Д.И.Менделеева.

к) Элемент № 27 - собальт (Со – порядковый № 27) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7

Валентные электроны собальта 4s 2 3d 7 - находятся на 4s- и 3d- подуровнях. На валентных орбиталях атома Со находится 9 электронов. Поэтому элемент помещают в девятую группу периодической системы Д.И.Менделеева.

л) Элемент № 28 - никель (Ni – порядковый № 28) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 8

Валентные электроны никеля 4s 2 3d 8 - находятся на 4s- и 3d- подуровнях. На валентных орбиталях атома Ni находится 10 электронов. Поэтому элемент помещают в десятую группу периодической системы Д.И.Менделеева.

м) Элемент № 29 - меди (Cu – порядковый № 29) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10

Валентные электроны меди 4s 1 3d 10 - находятся на 4s- и 3d- подуровнях. На валентных орбиталях атома Cu находится 11 электронов. Поэтому элемент помещают в одиннадцатую группу периодической системы Д.И.Менделеева.
У атома меди наблюдается проскок ("провал" ): один электрон 4s-подуровня переходит на 3d-подуровень. Это объясняется тем, что состояние атома считается более энергетически выгодным, если на d-подуровне находится не 9, а 10 электронов. Потому что энергетически более выгоднее для атома меди когда заполнены все пять d-ячеек на 3d-подуровне, но не тогда когда четыре d-ячейки заполнены, а на пятой только один электрон. Для заполнения пятой d-ячейки 3d-подуровня один электрон 4s-подуровня переходит на 3d-подуровнь, как бы "проваливается ". Таким образом, атому меди энергетически выгоднее валентная электроная конфигурация 4s 1 3d 10 , а не 4s 2 3d 9 .

н) Элемент № 30 - цинка (Zn – порядковый № 30) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10

Валентные электроны цинка 4s 2 3d 10 - находятся на 4s- и 3d- подуровнях. На валентных орбиталях атома Zn находится 12 электронов. Поэтому элемент помещают в двенадцатую группу периодической системы Д.И.Менделеева.

о) Элемент № 31 - галлий (Ga – порядковый № 31) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4р 1

Валентные электроны галлия 4s 2 3d 10 4р 1 - находятся на 4s-, 3d- и 4р- подуровнях. На валентных орбиталях атома Ga находится 13 электронов. Поэтому элемент помещают в тринадцатую группу периодической системы Д.И.Менделеева.

п) Элемент № 32 - германий (Ge – порядковый № 32) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4р 2

Валентные электроны германия 4s 2 3d 10 4р 2 - находятся на 4s-, 3d- и 4р- подуровнях. На валентных орбиталях атома Gе находится 14 электронов. Поэтому элемент помещают в четырнадцатую группу периодической системы Д.И.Менделеева.

р) Элемент № 33 - мышьяк (As – порядковый № 33) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4р 3

Валентные электроны мышьяка 4s 2 3d 10 4р 3 - находятся на 4s-, 3d- и 4р- подуровнях. На валентных орбиталях атома As находится 15 электронов. Поэтому элемент помещают в пятнадцатую группу периодической системы Д.И.Менделеева.

с) Элемент № 34 - селен (Se – порядковый № 34) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4р 4

Валентные электроны селена 4s 2 3d 10 4р 4 - находятся на 4s-, 3d- и 4р- подуровнях. На валентных орбиталях атома Se находится 16 электронов. Поэтому элемент помещают в шестнадцатую группу периодической системы Д.И.Менделеева.

с) Элемент № 35 - бром (Br – порядковый № 35) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4р 5

Валентные электроны брома 4s 2 3d 10 4 р 5 - находятся на 4s-, 3d- и -подуровнях. На валентных орбиталях атома Br находится 17 электронов. Поэтому элемент помещают в семнадцатую группу периодической системы Д.И.Менделеева.

т) Элемент № 36 - криптон (Kr – порядковый № 36) электронная формула имеет вид:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4р 6

Валентные электроны криптона 4s 2 3d 10 4р 6 - находятся на 4s-, 3d- и 4р- подуровнях. На валентных орбиталях атома Kr находится 18 электронов. Поэтому элемент помещают в восемнадцатую группу периодической системы Д.И.Менделеева.

Выясним, как составить электронную формулу химического элемента. Этот вопрос является важным и актуальным, так как дает представление не только о строении, но и о предполагаемых физических и химических свойствах рассматриваемого атома.

Правила составления

Для того чтобы составить графическую и электронную формулу химического элемента, необходимо иметь представление о теории строения атома. Начнем с того, что есть два основных компонента атома: ядро и отрицательные электроны. Ядро включает в себя нейтроны, которые не имеют заряда, а также протоны, обладающие положительным зарядом.

Рассуждая, как составить и определить электронную формулу химического элемента, отметим, что для нахождения числа протонов в ядре, потребуется периодическая система Менделеева.

Номер элемента по порядку соответствует количеству протонов, находящихся в его ядре. Номер периода, в котором располагается атом, характеризует число энергетических слоев, располагаются на которых электроны.

Для определения количества нейтронов, лишенных электрического заряда, необходимо из величины относительной массы атома элемента, отнять его порядковый номер (количество протонов).

Инструкция

Для того чтобы понять, как составить электронную формулу химического элемента, рассмотрим правило заполнения отрицательными частицами подуровней, сформулированное Клечковским.

В зависимости от того, каким запасом свободной энергии обладают свободные орбитали, составляется ряд, характеризующий последовательность заполнения уровней электронами.

Каждая орбиталь содержит всего два электрона, которые располагаются антипараллельными спинами.

Для того чтобы выразить структуру электронных оболочек, применяют графические формулы. Как выглядят электронные формулы атомов химических элементов? Как составлять графические варианты? Эти вопросы включены в школьный курс химии, поэтому остановимся на них подробнее.

Существует определенная матрица (основа), которую используют при составлении графических формул. Для s-орбитали характерна только одна квантовая ячейка, в которой противоположно друг другу располагается два электрона. Их в графическом виде обозначаются стрелками. Для р-орбитали изображают три ячейки, в каждой также находится по два электрона, на d орбитали располагается десять электронов, а f заполняется четырнадцатью электронами.

Примеры составления электронных формул

Продолжим разговор о том, как составить электронную формулу химического элемента. Например, нужно составить графическую и электронную формулу для элемента марганца. Сначала определим положение данного элемента в периодической системе. Он имеет 25 порядковый номер, следовательно, в атоме располагается 25 электронов. Марганец - это элемент четвертого периода, следовательно, у него четыре энергетических уровня.

Как составить электронную формулу химического элемента? Записываем знак элемента, а также его порядковый номер. Пользуясь правилом Клечковского, распределяем по энергетическим уровням и подуровням электроны. Последовательно располагаем их на первом, втором, а также третьем уровне, вписывая в каждую ячейку по два электрона.

Далее суммируем их, получая 20 штук. Три уровня в полном объеме заполнены электронами, а на четвертом остается только пять электронов. Учитывая, что для каждого вида орбитали характерен свой запас энергии, оставшиеся электроны распределяем на 4s и 3d подуровень. В итоге готовая электронно-графическая формула для атома марганца имеет следующий вид:

1s2 / 2s2, 2p6 / 3s2, 3p6 / 4s2, 3d3

Практическое значение

С помощью электронно-графических формул можно наглядно увидеть число свободных (неспаренных) электронов, определяющих валентность данного химического элемента.

Предлагаем обобщенный алгоритм действий, с помощью которого можно составить электронно-графические формулы любых атомов, располагающихся в таблице Менделеева.

В первую очередь необходимо определить количество электронов, используя периодическую систему. Цифра периода указывает на численность энергетических уровней.

Принадлежность к определенной группе связана с количеством электронов, находящихся на наружном энергетическом уровне. Подразделяют уровни на подуровни, заполняют их с учетом правила Клечковского.

Заключение

Для того чтобы определить валентные возможности любого химического элемента, расположенного в таблице Менделеева, необходимо составить электронно-графическую формулу его атома. Алгоритм, приведенный выше, позволит справиться с поставленной задачей, определить возможные химические и физические свойства атома.

Атом – электронейтральная система, состоящая из положительно заряженного ядра и отрицательно заряженных электронов. Электроны располагаются в атоме, образуя энергетические уровни и подуровни.

Электронная формула атома – это распределение электронов в атоме по энергетическим уровням и подуровням в соответствии с принципом наименьшей энергии (Клечковского), принципом Паули, правилом Гунда.

Состояние электрона в атоме описывается с помощью квантово-механической модели – электронного облака, плотность соответствующих участков которого пропорциональна вероятности нахождения электрона. Обычно под электронным облаком понимают область околоядерного пространства, которая охватывает примерно 90% электронного облака. Эта область пространства называется также орбиталью.

Атомные орбитали образуют энергетический подуровень. Орбиталям и подуровням присвоены буквенные обозначения. Каждый подуровень имеет определенное число атомных орбиталей. Если атомную орбиталь изобразить в виде магнитно-квантовой ячейки, то атомные орбитали, находящиеся на подуровнях, можно представить следующим образом:

На каждой атомной орбитали могут находиться одновременно не более двух электронов, различающихся спином (принцип Паули). Это различие обозначается стрелками ¯­. Зная, что на s -подуровне одна s -орбиталь, на р -подуровне три р -орбитали, на d -подуровне пять d -орбиталей, на f -подуровне семь f- орбиталей, можно найти максимальное количество электронов на каждом подуровне и уровне. Так, на s -подуровне, начиная с первого энергетического уровня, 2 электрона; на р -подуровне, начиная со второго энергетического уровня, 6 электронов; на d -подуровне, начиная с третьего энергетического уровня, 10 электронов; на f -подуровне, начиная с четвертого энергетического уровня, 14 электронов. Электроны на s-, p-, d-, f- подуровнях называются соответственно s-, р-, d-, f -электронами.

Согласно принципу наименьшей энергии , последовательное заполнение энергетических подуровней электронами происходит таким образом, что каждый электрон в атоме занимает подуровень с наиболее низкой энергией, отвечающей его прочной связи с ядром. Изменение энергии подуровней может быть представлено в виде ряда Клечковского или шкалы энергии:



1s <2s <2p <3s <3p <4s <3d <4p <5s <4d <5p <6s <4f <5d <6p <7s <5f <6d <7p ...

Согласно правилу Гунда, каждая квантовая ячейка (орбиталь) энергетического подуровня сначала заполняется одиночными электронами с одинаковым спином, а затем – вторым электроном с противоположным спином. Два электрона с противоположным спином, находящиеся на одной атомной орбитали, называют спаренными. Одиночные электроны – неспаренные.

Пример 1. Разместите 7 электронов на d -подуровне с учётом правила Гунда.

Решение. На d -подуровне – пять атомных орбиталей. Энергия орбиталей, находящихся на одном и том же подуровне, одинаковая. Тогда d -подуровень можно представить так: d . После заполнения электронами атомных орбиталей с учётом правила Гунда d -подуровень будет иметь вид .

Используя теперь представления о принципах наименьшей энергии и Паули, распределим электроны в атомах по энергетическим уровням (табл. 1).

Таблица 1

Распределение электронов по энергетическим уровням атомов

Используя данную схему, можно объяснить формирование электронных структур атомов элементов периодической системы, записанных в виде электронных формул. Общее число электронов в атоме определяется порядковым номером элемента.

Так, в атомах элементов первого периода будет заполняться электронами одна s -орбиталь первого энергетического уровня (табл. 1). Так как на этом уровне два электрона, то в первом периоде только два элемента (1 H и 2 He), электронные формулы которых следующие: 1 H 1s 1 и 2 Не 1s 2 .

В атомах элементов второго периодапервый энергетический уровень полностью заполнен электронами. Последовательно будут заполняться электронами s - и р -подуровни второго энергетического уровня. Сумма s - и р -электронов, заполнивших этот уровень, равна восьми, поэтому во втором периоде 8 элементов (3 Li… 10 nе).

В атомах элементов третьего периода первый и второй энергетические уровни полностью заполнены электронами. Последовательно будут заполняться s - и р -подуровни третьего энергетического уровня. Сумма s - и р -электронов, заполнивших третий энергетический уровень, равна восьми. Поэтому в третьем периоде 8 элементов (11 Na… 18 Аr).

В атомах элементов четвертого периода заполнены первый, второй и третий 3s 2 3р 6 энергетические уровни. На третьем энергетическом уровне свободным остается d -подуровень (3d ). Заполнение этого подуровня электронами от одного до десяти начинается после того, как заполнится максимально электронами 4s -подуровень. Далее размещение электронов происходит на 4р -подуровне. Сумма 4s -, 3d - и 4р-электронов равна восемнадцати, что соответствует 18 элементам четвертого периода(19 К… 36 Кr).

Аналогично происходит формирование электроных структур атомов элементов пятого периода с той лишь разницей, что s - и р -подуровни находятся на пятом, а d -подуровень на четвертом энергетическом уровнях. Так как сумма 5s -, 4d - и 5р -электронов равна восемнадцати, то в пятом периоде 18 элементов (37 Rb… 54 Xе).

В сверхбольшом шестом периоде 32 элемента (55 Cs… 86 Rn). Это число соответствует сумме электронов на 6s -, 4f -, 5d - и 6р -подуровнях. Последовательность заполнения подуровней электронами такова. Сначала заполняется электронами 6s -подуровень. Затем, вопреки ряду Клечковского, заполнится одним электроном 5d -подуровень. После этого максимально заполнится 4f -подуровень. Далее будут заполняться 5d - и 6р -подуровни. Предыдущие энергетические уровни заполнены электронами.

Аналогичное явление наблюдается при формировании электронных структур атомов элементов седьмого периода.

Таким образом, чтобы написать электронную формулу атома элемента необходимо знать следующее.

1. Порядковый номер элемента в периодической системе элементов Д.И. Менделеева, соответствующий общему числу электронов в атоме.

2. Номер периода, который определяет общее число энергетических уровней в атоме. При этом номер последнего энергетического уровня в атоме соответствует номеру периода, в котором находится элемент. В атомах элементов второго и третьего периодов заполнение электронами последнего энергетического уровня происходит в такой последовательности: ns 1–2 … 1–6 . В атомах элементов третьего и четвертого периодов подуровни последнего и предпоследнего энергетических уровней заполняются электронами так: ns 1–2 …(n –1)d 1–10 … 1–6 . В атомах элементов шестого и седьмого периодов последовательность заполнения электронами подуровней такая: ns 1–2 …(n –1)d 1 …(n -2)f 1–14 …(n –1)d 2–10 … 1–6 .

3. В атомах элементов главных подгрупп сумма s - и р -электронов на последнем энергетическом уровне равна номеру группы.

4. В атомах элементов побочных подгрупп сумма d -электронов на предпоследнем и s -электронов на последнем энергетических уровнях равна номеру группы, кроме атомов элементов подгрупп кобальта, никеля, меди и цинка.

Размещение электронов в атомных орбиталях одного и того же энергетического подуровня происходит в соответствии с правилом Гунда :суммарное значение спина электронов, находящихся на одном и том же подуровне, должно быть максимальным, т.е. данный подуровень на каждую орбиталь вначале принимает по одному электрону с параллельными спинами, а затем – второй электрон с противоположным спином.

Пример 2 . Напишите электронные формулы атомов элементов, имеющих порядковые номера 4, 13, 22.

Решение. Элемент с порядковым номером 4 – бериллий. Следовательно, в атоме бериллия 4 электрона. Бериллий находится во втором периоде, во второй группе главной подгруппы. Номер периода соответствует числу энергетических уровней, т.е. двум. На этих энергетических уровнях должны размещаться четыре электрона. На первом энергетическом уровне два электрона (1s 2) и на втором тоже два электрона (2s 2) (см. табл 1). Таким образом, электронная формула имеет следующий вид: 4 Ве 1s 2 2s 2 . Число электронов на последнем энергетическом уровне соответствует номеру группы, в которой он находится.

В периодической системе порядковому номеру 13 соответствует элемент алюминий. Алюминий находится в третьем периоде, в третьей группе, вглавной подгруппе. Следовательно, на третьем энергетическом уровне должны находиться три электрона, которые разместятся таким образом: 3s 2 3р 1 (сумма s - и р -электронов равна номеру группы). Десять электронов находятся на первом и втором энергетических уровнях: 1s 2 2s 2 2p 6 (см. табл. 1). В целом электронная формула алюминия следующая: 13 Al 1s 2 2s 2 2p 6 3s 2 3p 1 .

В периодической системе элемент с порядковым номером 22 – титан. В атоме титана двадцать два электрона. Размещаются они на четырех энергетических уровнях, так как элемент находится в четвертом периоде. При размещении электронов по подуровням необходимо учесть, что это – элемент четвертой группы побочной подгруппы. Поэтому на четвёртом энергетическом уровне, s -подуровне находятся два электрона: 4s 2 . Первый, второй, третий уровни s - и р -подуровни полностью заполнены электронами 1s 2 2s 2 2p 6 3s 2 3p 6 (см. табл. 1). Оставшиеся два электрона разместятся на d -подуровне третьего энергетического уровня: 3d 2 . В целом электронная формула титана такая: 22 Тi 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2 .

Проскок» электронов

При написании электронных формул следует учитывать «проскок» электронов с s -подуровня внешнего энергетического уровня ns на d -подуровень предвнешнего уровня (n – 1)d . Предполагают, что такое состояние наиболее энергетически выгодно. «Проскок» электрона происходит в атомах некоторых d -элементов, например, 24 Сr, 29 Cu, 42 Mo, 47 Ag, 79 Au, 41 Nb, 44 Ru, 45 Rh, 46 Pd.

Пример 3 . Напишите электронную формулу атома хрома с учётом «проскока» одного электрона.

Решение. Электронная формула хрома, согласно принципу минимальной энергии, должна быть такой: 24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2 . Однако, в атоме этого элемента наблюдается «проскок» одного s -электрона с внешнего 4s -подуровня на подуровень 3d . Поэтому расположение электронов в атоме хрома такое: 24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 .