Что такое структура технологического процесса. Структура технологического процесса: получение заготовок; термическая обработка; формообразование; механическая обработка; сборка; испытание

В открытых новых месторождениях нефти необходимо очень тщательно изучать состав и содержание примесей добываемой нефти. В зависимости от места добычи нефти состав их может существенно изменяться. В особенности это касается серы, сероводорода и метил - этилмеркаптанов. Причем содержание может варьироваться в больших пределах: от 0,60 до 5,00%. Так, например, есть малосернистые: содержание серы в них до 0,60%, сернистые - от 0,61 до 1,80%, высокосернистые - от 1,81 до 3,50%, особо высокосернистые - свыше 3,50% по ГОСТ 1437 и 9.2.

В последнее время в лабораториях вместо трудоемких способов для определения серы стали применять более усовершенствованные методы определения серы.

Энергодисперсионная рентгенофлуоресцентная спектроскопия

Так, для определения серы используется современный метод энергодисперсионной рентгенофлуоресцентной спектроскопии по ГОСТ 51947-2002. Его сущность состоит в том, что нефть помещают в пучок лучей, испускаемых источником рентгеновского излучения. Измеряют характеристики энергии возбуждения от рентгеновского излучения и сравнивают полученный сигнал счетчика импульсов с сигналами счетчика, полученными при заранее подготовленных калибровочных образцов. Этот метод обеспечивает быстрое и точное измерение общей серы в нефти с минимальной подготовкой образца. Время анализа обычно 2-4 мин. Диапазон измерения серы от 0,0150 до 5,00%. Рентгенофлуоресцентный спектрометр отличается быстротой получения результатов, удобством, хорошей точностью. Существует множество методик для проведения исследований в различных областях науки и техники

Имитированная дистилляция

Также для анализа нефтепродуктов используется широко распространенный газохроматографический метод имитированной дистилляции. Традиционный метод имитированной дистилляции предполагает использование насадочных колонок. Спецификация на реактивное топливо и дизельное топливо указывает имитированную дистилляцию как альтернативу дистилляции при атмосферном давлении при получении информации об истинном распределении по температурам кипения. Метод имитированной дистилляции использует газохроматографическую технику для получения информации об истинном распределении по температурам кипения нефти и нефтяных фракций до 750 °С.

Методом имитированной дистилляции получают кривую истинных температур кипения, которая строится по данным хроматографического разделения исследуемого продукта на колонке с неполярным сорбентом в режиме программирования температуры. После ввода образца в инжектор, группы углеводородов выводятся на хроматограмму в порядке возрастания их температур кипения. Предварительно выполняется калибровка системы по эталонной смеси углеводородов с известными температурами кипения. Кривые имитированной дистилляции хорошо совпадают с результатами определения фракционного состава перегонкой при атмосферном давлении и при пониженном давлении. Для описания тяжелых фракций нефти использовали газовый хроматограф с высокотемпературным термостатом.

Метод имитированной дистилляции с помощью газовой хроматографии позволяет проводить анализ нефтяных продуктов не только быстрее и с большей степенью точности, но и требует для осуществления меньшего количества анализируемых веществ.

Атомно-абсорбционный анализ

Анализ нефтепродуктов занимает один из основных сегментов применения атомной абсорбции в анализе веществ. Типичными образцами нефтепродуктов являются сырая нефть, топливо (бензин) смазочные масла (свежеприготовленные и отработанные).

Атомно-абсорбционный анализ (атомно-абсорбционная спектрометрия), метод количественного элементного анализа по атомным спектрам поглощения (абсорбции). Через слой атомных паров пробы, получаемых с помощью атомизатора, пропускают излучение в диапазоне 190-850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетические состояния. Этим переходам в атомных спектрах соответствуют так называемые резонансные линии, характерные для данного элемента. Согласно закону Бугера - Ламберта - Бера мерой концентрации элемента служит оптическая плотность A = lg(I 0 /I), где I 0 и I-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой.

Рисунок 1: Принципиальная схема пламенного атомно-абсорбционного спектрометра: 1-источник излучения; 2-пламя; 3-монохрома гор; 4-фотоумножитель; 5-регистрирующий или показывающий прибор.

Приборы для атомно-абсорбционного анализа - атомно-абсорбционные спектрометры - прецизионные высокоавтоматизированные устройства, обеспечивающие воспроизводимость условий измерений, автоматическое введение проб и регистрацию результатов измерения. В некоторые модели встроены микроЭВМ. В качестве примера на рисунке приведена схема одного из спектрометров. Источником линейчатого излучения в спектрометрах чаще всего служат одноэлементные лампы с полым катодом, заполняемые неоном. Для определения некоторых легколетучих элементов (Cd, Zn, Se, Те и др.) удобнее пользоваться высокочастотными безэлектродными лампами.

Перевод анализируемого объекта в атомизированное состояние и формирование поглощающего слоя пара определенной и воспроизводимой формы осуществляется в атомизаторе - обычно в пламени или трубчатой печи. Наиб. часто используют пламя смесей ацетилена с воздухом (макс. температура 2000 °С) и ацетилена с N2O (2700 °С). Горелку со щелевидным соплом длиной 50-100 мм и шириной 0,5-0,8 мм устанавливают вдоль оптической оси прибора для увеличения длины поглощающего слоя.

Трубчатые печи сопротивления изготавливают чаще всего из плотных сортов графита. Для исключения диффузии паров через стенки и увеличения долговечности графитовые трубки покрывают слоем газонепроницаемого пироуглерода. Максимальная температура нагрева достигает 3000 °С. Менее распространены тонкостенные трубчатые печи из тугоплавких металлов (W, Та, Мо), кварца с нихромовым нагревателем. Для защиты графитовых и металлических печей от обгорания на воздухе их помещают в полугерметичные или герметичные камеры, через которые продувают инертный газ (Аr, N2). Введение проб в поглощающую зону пламени или печи осуществляют разными приемами. Растворы распыляют (обычно в пламя) с помощью пневматических распылителей, реже - ультразвуковых. Первые проще и стабильнее в работе, хотя уступают последним в степени дисперсности образующегося аэрозоля. Лишь 5-15% наиболее мелких капель аэрозоля поступает в пламя, а остальная часть отсеивается в смесительной камере и выводится в сток. Максимальная концентрация твердого вещества в растворе обычно не превышает 1%. В противном случае происходит интенсивное отложение солей в сопле горелки.

Термическое испарение сухих остатков растворов - основной способ введения проб в трубчатые печи. При этом чаще всего пробы испаряют с внутренней поверхности печи; раствор пробы (объемом 5-50 мкл) вводят с помощью микропипетки через дозировочное отверстие в стенке трубки и высушивают при 100 °С. Однако пробы испаряются со стенок при непрерывном возрастании температуры поглощающего слоя, что обусловливает нестабильность результатов. Чтобы обеспечить постоянство температуры печи в момент испарения, пробу вводят в предварительно нагретую печь, используя угольный электрод (графитовую кювету) графитовый тигель (печь Вудриффа), металлический или графитовый зонд. Пробу можно испарять с платформы (графитового корытца), которую устанавливают в центре печи под дозировочным отверстием. В результате значительного отставания температуры платформы от температуры печи, нагреваемой со скоростью около 2000 К/с, испарение происходит при достижении печью практически постоянной температуры.

Для введения в пламя твердых веществ или сухих остатков растворов используют стержни, нити, лодочки, тигли из графита или тугоплавких металлов, помещаемые ниже оптической оси прибора, так что пары пробы поступают в поглощающую зону с потоком газов пламени. Графитовые испарители в ряде случаев дополнительно подогревают электрическим током. Для исключения механических потерь порошкообразных проб в процессе нагрева применяются испарители типа цилиндрических капсул, изготовленные из пористых сортов графита.

Иногда растворы проб подвергают в реакционном сосуде обработке в присутствии восстановителей, чаще всего NaBH4. При этом Hg, напр., отгоняется в элементном виде, As, Sb, Bi и других в виде гидридов, которые вносятся в атомизатор потоком инертного газа. Для монохроматизации излучения используют призмы или дифракционные решетки; при этом достигают разрешения от 0,04 до 0,4 нм.

При атомно-абсорбционном анализе необходимо исключить наложение излучения атомизатора на излучение источника света, учесть возможное изменение яркости последнего, спектральные помехи в атомизаторе, вызванные частичным рассеянием и поглощением света твердыми частицами и молекулами посторонних компонентов пробы. Для этого пользуются различными приемами, напр. модулируют излучение источника с частотой, на которую настраивают приемо - регистрирующее устройство, применяют двулучевую схему или оптическую схему с двумя источниками света (с дискретным и непрерывным спектрами). наиболее эффективна схема, основанная на зеемановском расщеплении и поляризации спектральных линий в атомизаторе. В этом случае через поглощающий слой пропускают свет, поляризованный перпендикулярно магнитному полю, что позволяет учесть неселективные спектральные помехи, достигающие значений А = 2, при измерении сигналов, которые в сотни раз слабее.

Достоинства атомно-абсорбционного анализа - простота, высокая селективность и малое влияние состава пробы на результаты анализа. Ограничения метода - невозможность одновременного определения нескольких элементов при использовании линейчатых источников излучения и, как правило, необходимость переведения проб в раствор.

Атомно-абсорбционный анализ применяют для определения около 70 элементов. Не определяют газы и некоторые другие неметаллы, резонансные линии которых лежат в вакуумной области спектра (длина волны меньше 190 нм). С применением графитовой печи невозможно определять Hf, Nb, Та, W и Zr, образующие с углеродом труднолетучие карбиды. Пределы обнаружения большинства элементов в растворах при атомизации в пламени 1-100 мкг/л, в графитовой печи в 100-1000 раз ниже. Абсолютные пределы обнаружения в последнем случае составляют 0,1-100 пг. Относительное стандартное отклонение в оптимальных условиях измерений достигает 0,2-0,5% для пламени и 0,5-1,0% для печи. В автоматическом режиме работы пламенный спектрометр позволяет анализировать до 500 проб в час, а спектрометр с графитовой печью - до 30 проб. Оба варианта часто используют в сочетании с предварительным разделением и концентрированием экстракцией, дистилляцией, ионным обменом, хроматографией, что в ряде случаев позволяет косвенно определять некоторые неметаллы и органические соединения.

Методы атомно-абсорбционного анализа применяют также для измерения некоторых физических и физико-химических величин - коэффициент диффузии атомов в газах, температур газовой среды, теплот испарения элементов и других; для изучения спектров молекул, исследования процессов, связанных с испарением и диссоциацией соединений.

Определение примесей металлов и фосфора в нефтепродуктах осуществляется на методом пламенной атомной абсорбции или на оптических эмиссионных спектрометрах индуктивно-связанной плазмы. Основной проблемой при работе с пробами такого типа является необходимость их подготовки. Обычно это делается путем озоления матрицы и растворение полученного остатка в водно-кислотной смеси.

Инфракрасная спектроскопия

Инфракрасная спектроскопия (ИК спектроскопия), раздел молекулярной оптической спектроскопии, изучающий спектры поглощения и отражения электромагнитного излучения в ИК области, то есть в диапазоне длин волн от 10-6 до 10-3 м. В координатах интенсивность поглощенного излучения - длина волны (или волновое число) ИК спектр представляет собой сложную кривую с большим числом максимумов и минимумов. Полосы поглощения появляются в результате переходов между колебательными уровнями основного электронного состояния изучаемой системы. Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) индивидуальной молекулы зависят от масс составляющих ее атомов, геометрического строения, особенностей межатомных сил, распределения заряда и др. Поэтому ИК спектры отличаются большой индивидуальностью, что и определяет их ценность при идентификации и изучении строения соединений. Для регистрации спектров используют классические спектрофотометры и фурье-спектрометры.

Инфракрасные спектры поглощения, отражения или рассеяния несут чрезвычайно богатую информацию о составе и свойствах пробы. Сопоставляя ИК спектр образца со спектрами известных веществ, можно идентифицировать неизвестное вещество, определить основной состав пищевых продуктов, полимеров, обнаружить примеси в атмосферном воздухе и газах, провести фракционный или структурно-групповой анализ. Методом корреляционного анализа по ИК спектру пробы также можно определить его физико-химические или биологические характеристики, например всхожесть семян, калорийность пищевых продуктов, размер гранул, плотность и т.д.

В современных приборах ИК спектр определяется сканированием по сдвигу фаз между двумя частями разделенного светового пучка (Фурье спектрометрия). Этот метод дает значительный выигрыш в фотометрической точности и точности отсчета длины волны.

Фурье спектрометры значительно выигрывают в фотометрической точности у дифракционных приборов. В дифракционных приборах на приемник попадает свет только в узком спектральном интервале, который попадает на выходную щель монохроматора. В Фурье спектрометрах на фотоприемник всегда поступает весь свет источника, и все спектральные линии регистрируются одновременно. Следовательно, возрастает соотношение сигнал/шум.

Метод ИК-спектроскопии основан на экстракции нефтепродуктов из пробы четыреххлористым углеродом или хладоном 113, очистке экстракта от полярных соединений методом колоночной хроматографии на оксиде алюминия и последующей регистрации поглощения излучения в области спектра 2700-3200 см-1, обусловленного валентными колебаниями СН3 и СН2 групп алифатических и алициклических соединений и боковых цепей ароматических углеводородов, а также связей СН ароматических соединений.

Метод может быть реализован как в варианте регистрации спектра поглощения в указанной области с помощью традиционного или Фурье-спектрометра, так и более простом варианте, при котором используется анализатор, измеряющий интегральное поглощение излучения в области 2900-3000 см-1, в которой наблюдаются наиболее интенсивные полосы поглощения, соответствующие асимметричным валентным колебаниям групп СН3 и СН2.

Метод требует обязательной градуировки средства измерений с использованием стандартных образцов состава раствора нефтепродуктов в четыреххлористом углероде. В России используются стандартные образцы, приготовленные на основе так называемой трехкомпонентной смеси (37,5% гексадекана, 37,5% 2,2,4 - триметилпентана и 25% бензола по массе). Нижняя граница диапазона измерения - 0,05 мг/дм3. Основное достоинство метода - слабая зависимость аналитического сигнала от типа нефтепродукта, составляющего основу загрязнения пробы.

Трудности, возникающие при использовании метода, связаны с мешающими влияниями липидов и других полярных соединений при их высоком содержании, при котором оказывается исчерпанной емкость хроматографической колонки, используемой для очистки экстракта. Основной недостаток метода - его неэкологичность, обусловленная применяемыми высокотоксичными растворителями

Качественные показатели нефти Самарских месторождений, их соответствие товарной нефти

Институтом нефти СО РАН сделан сравнительный анализ качества российской нефти, дана оценка основных нефтегазовых месторождений, в том числе Волго-Уральской. Стратегия развития России в области энергетики предусматривает увеличение объемов переработки нефти до 220-225 млн т в год. Значительную часть полученных нефтепродуктов планируется экспортировать, в том числе и в Западную Европу. Однако постоянное ужесточение экологических и качественных требований Европейского Союза к потребляемым нефтепродуктам может привести к сокращению экспортных возможностей нефтеперерабатывающей отрасли России. В силу этого задача обеспечения мирового уровня качества выпускаемой продукции становится для отечественных НПЗ все более актуальной. Сложность ее решения в значительной степени определяется качеством поступающего на переработку сырья. Следовательно, определение качества нефти, добываемой из различных месторождений, приобретает важное значение как для производителей, так и для потребителей нефти .

Для сырой нефти основными качественными характеристиками являются плотность, содержание серы и фракционный состав. В ТУ 39-1623-93 «Нефть российская, поставляемая для экспорта» по перечисленным физико-химическим свойствам нефть разделена на четыре типа (см. табл. 1) .

Таблица 1. Классификация нефти, поставляемой для экспорта

Определение качества нефти

За рубежом при определении качественных показателей нефти применяются плотностная и дистилляционная модели качества.

В плотностной модели качество нефти и, соответственно, ее стоимостные показатели связываются с плотностью и содержанием серы. Дистилляционная модель качество нефти и ее стоимость связывает с потенциалом светлых фракций нефти. Попытка привести качество отечественной нефти к мировым стандартам привела к тому, что в 1989 г. в нашей стране впервые в дополнениях к ГОСТ 9965 «Нефть для нефтеперерабатывающих предприятий. Технические условия» основными показателями, характеризующими потребительские свойства нефти, были предложены плотность и массовое содержание серы. Позже в в качестве наиболее значительно влияющих на потребительские свойства нефти указаны следующие физико-химические свойства нефти:

· плотность нефти p;

· выход фракций при температурах до 200, 300 и 350 градусов;

· массовая доля серы S;

· концентрация хлористых солей С.

Плотность нефти в значительной степени зависит от количества содержащихся в ней асфальтосмолистых веществ, способствующих образованию стойких водонефтяных эмульсий, увеличивающих стоимость ее переработки. Выявляются и другие негативные последствия при переработке тяжелых смолистых нефтей. В частности, увеличение затрат при транспортировке и переработке такой нефти. Повышенное содержание серы в нефти приводит к интенсивной коррозии аппаратуры, необходимости защелачивания продуктов переработки, гидроочистке бензиновых фракций, «отравлению» катализаторов. А вот увеличение содержания светлых фракций, приводящее к снижению затрат при производстве топлив, повышает качество нефти. Концентрация хлористых солей отражает загрязнение нефти при разработке залежи, в процессе добычи.

В определен комплексный показатель качества К для оценки товарной нефти. Поскольку нет аналогичного комплексного критерия для определения качества нефтей в залежах разных месторождений и нефтегазоносных провинций (НГП), в работе предпринята попытка использовать показатель К. При этом технологический показатель С принимается равным 100 мг/л. Рассматриваемая в методика определения комплексного показателя качества нефти K предполагает расчет по формуле:

К = 0,04S + 0,00054C + 1,74p - 0,0087Ф 200 - 0,0056Ф 300 - 0,0049Ф 350 , (1)

С - концентрация хлористых солей (мг/л),

p - плотность нефти (г/см3),

Ф 200 , Ф 300 , Ф 350 - содержание фракций при температуре до 200, 300 и 350 °С соответственно (% объемный).

К у = 0,0029S + 0,00039C + 2,696с - 1,003 , (3)

Отклонение комплексного показателя качества, полученного по уравнению (1), от единицы в сторону увеличения означает ухудшение качества нефти (удорожание ее переработки), в сторону уменьшения - улучшения качества нефти (удешевление ее переработки). Следовательно, критерий классификации нефти по комплексному показателю качества заключается в следующем:

Если К < 1 - нефть высокого качества;

При К? 1 - нефть низкого качества.

Комплексный показатель качества и его упрощенное значение.

Вычисления значений показателей качества К и К у производились с помощью уравнений (1) и (3), где значения параметров p, S, Ф 200 , Ф 300 являются среднебассейновыми величинами в объемных единицах. При этом в (1) будем принимать величину С = 100 мг/л, а Ф 350 приближенно вычисляется по выражению (2).

Средние значения для К и К у равны 0,978 и 0,938 соответственно. Т.е. расчет по формуле (3) дает сдвиг значений по сравнению с расчетом по (1) в сторону уменьшения значений показателя качества, что соответствует повышению качества нефти. Границы доверительного интервала

К = 0,978 ± 0,090

для среднего значения К с доверительной вероятностью 0,95 определены от 0,888 до 1,068. Следовательно, среднее значение показателя К у, равное 0,938, находится в пределах границ доверительного интервала (0,888 - 1,068) для среднего значения К, вычисленного по той же формуле (1).

Связь между качеством и ценой нефти.

Рассмотрим, как сказываются расчеты по (1) и (3) на определении цены на нефть, с учетом того, что качество нефти исключительно важно для ее стоимости. В мировой практике различие в ценах на нефть определяется потенциальным содержанием светлых нефтепродуктов, а качество оценивается по ее плотности и содержанию серы . Анализируя формулы расчета показателя качества нефти, можно заключить, что на качество, а, следовательно, и на цену нефти, больше влияет показатель ее плотности, нежели содержание серы, т. к. коэффициент взаимной значимости плотности с в формуле (1) является наибольшим по сравнению с другими коэффициентами. Поэтому ниже будем рассматривать влияние изменения величины плотности нефти на прогноз цены на нефть.

В работе предлагается методика расчета коэффициентов влияния плотности на цену нефти. Так, для российской экспортной смеси Urals коэффициент линейной зависимости цены от плотности равен $0,23 за тонну нефти при изменении плотности на 0,001. Среднему значению К согласно (1) соответствует среднее значение плотности p, равное 0,856. Принимая в (3) величину К у, равной среднему значению К = 0,978, найдем кажущуюся величину плотности p у, отличающуюся от с на?p = 0,039. Следовательно, увеличение плотности нефти на 0,039 повлечет за собой уменьшение цены тонны Urals на $8,97, если расчет качества производится по формуле (3).

Подобные исследования проводились и для других нефтей. Для американской нефти WTI коэффициент линейной зависимости равен $0,47 за тонну при изменении плотности на 0,001, а для нефти американской компании Conoco изменение цены на нефть равно $0,22 за тонну при изменении плотности на 0,001 . Следовательно, увеличение плотности на 0,039 для такой нефти означает уменьшение ее цены на $8,58 за тонну при использовании формулы (3) для расчета качества нефти.

Сравнение нефтей основных НГП по качеству и физико-химическим свойствам

В табл. 2 представлено распределение НГП по территории стран СНГ с учетом показателя качества К, вычисленного для нефтей каждой провинции по формуле (1) и усредненного по всей территории провинций.

Таблица 2. Распределение НГП по показателю качества

Названиепровинции

Среднеезначение К

Интервализменения К

Числозаписей в БД

Охотская

Балтийская

Днепровско-Припятская

Северо-Кавказская

Тимано-Печорская

Лено-Тунгусская

Западно-Сибирская

Волго-Уральская

Прикаспийская

Лено-Вилюйская

Енисейско-Анабарская

Видно, что в основном НГП России содержат нефти высокого качества (К < 1), за исключением Лено-Вилюйской и Енисейско-Анабарской НГП (К > 1). Видим, что Волго-Уральская провинция имеет К < 1. Следовательно, в самарском регионе мы имеем нефти высокого качества.

Интересно также сравнить основные НГП России по физико-химическим свойствам нефтей на основе классификации, представленной в табл. 2 . Для этого введем дополнительный 5-й тип нефти, которая не соответствует ни одному из 4 типов, представленных в табл. 1 . Этот 5-й тип имеет следующие характеристики:

p > 895 кг/м3,

Ф 200 < 19%,

Ф 300 < 35%,

Ф 350 < 48%.

Распределение нефтей основных Волго - Уральских НГП по параметрам p, S, Ф 200 и Ф 300 представлено в табл. 3.

Районирование территории Волго-Уральской провинции по качеству нефти

Волго-Уральская НГП является одной из самых старых и до сих пор основных нефтедобывающих провинций России. Она характеризуется высокой степенью разведанности и выработанности запасов углеводородного сырья. Геозонирование территории Волго-Уральской нефтегазоносной провинции по комплексному показателю качества нефти К проведено с использованием массива данных из 1983 образцов нефти (табл. 1) более 500 месторождений ВУНГП. Для проведения анализа были определены средние значения (по территории месторождений) для величин p, S, Ф 200 и Ф 300 .

Большинство месторождений (более 62% от общего числа месторождений ВУНГП с известным качеством нефтей) содержат нефть высокого качества. Наиболее крупные из них: в Самарской области - Кулешевское, Мухановское, Рассветское;

Табл. 3. Распределение нефтей НГП по 5 типам

Тип нефти

Волго - Уральская

Классификация нефтей по плотности (%)

Классификация нефтей по содержанию серы (%)

Классификация нефтей по выходу фракции Ф 200 (%)

Классификация нефтей НГП по выходу фракции Ф 300 (%)

Количество нефтей 1-го типа по содержанию серы меньше всего в Волго-Уральской нефтегазоносной провинции (около 14%). Нефтей 1-го типа по выходу фракции Ф 200 меньше всего - в Волго-Уральской нефтегазоносной провинции (более 48% от всех нефтей провинции).

Следует отметить, что месторождения с высококачественной нефтью имеются на всей территории ВУНГП, однако на окраинах провинции они составляют абсолютное большинство. На рис. 1 представлено общее распределение нефтей Волго-Уральской нефтегазоносной провинции по качеству. Видно, что около 2 / 3 всех нефтей Урало-Поволжья имеют высокое качество, а оставшаяся 1 / 3 относится к нефтям низкого качества.

Й1. Введение

Технологией называется совокупность знаний о методах и средствах производства изделий.

Технология машиностроения изучает методы и средства механической обработки и сборки изделий.

Согласно учебному плану специальности 151001 - Технология машиностроения предмет «Технология машиностроения» состоит из трех отдельных курсов.

1. Основы технологии машиностроения . Этот курс является базовым для остальных технологических дисциплин. В нем представлены теоретические сведения: термины, определения и основные понятия, необходимые для проектирования технологических процессов механической обработки деталей машин и оформления технологической документации.

2. Технология машиностроения, часть 1. Технология производства машин . В этом курсе изучается технология производства типовых деталей машин: валов, корпусных деталей, зубчатых колес и. т. д., а также технология сборки изделий

3. Технология машиностроения, часть 2. Технология автоматизированного производства . В этом курсе изучаются особенности технологии производства изделий на станках с числовым программным управлением, станках автоматах и полуавтоматах.

Кроме того, учебный план содержит дисциплины тесно связанные с технологией машиностроения. Среди них: физико-химические методы обработки материалов, материаловедение, технология конструкционных материалов, производство и механическая обработка заготовок, проектирование машиностроительного производства, технологическая оснастка, резание металлов, режущий инструмент, металлорежущие станки и ряд других.

В результате изучения этих курсов студент должен получить знания и навыки достаточные для разработки технологии производства изделий необходимого качества, в заданном количестве, в планируемые сроки, при наименьших затратах.

Выпускникам кафедры технологии машиностроения УГТУ-УПИ присваивается квалификация «инженер» по специальности 151001 - «Технология машиностроения». Срок обучения составляет пять лет. Учебный план ориентирован на специализацию «Технология машиностроения. Компьютерное проектирование». Дисциплинами специализации являются: математическое моделирование процессов в машиностроении, размерный анализ и обоснование технологических решений, машинная графика в автоматизированном проектировании, промышленные САПР и др.



Виды изделий

Изделие - это предмет или набор предметов, полученных в результате целенаправленных трудовых действий.

Согласно ГОСТ 2.101- 68 установлены следующие виды изделий.

Детали - изделия, изготовленные из однородного по наименованию и марке материала без применения сборочных операций: свинчивания, сварки, клепки и. т. д. Например: вал, зубчатое колесо, корпус редуктора и. т. д.

Сборочные единицы - изделия, составные части которых подлежат соединению между собой на предприятии – изготовителе путем применения сборочных операций. Например: редуктор, станок, автомобиль и. т. д.

Комплексы - два и более специфицированных изделия, не соединенных на предприятии- изготовителе сборочными операциями, но предназначенных для выполнения взаимосвязанных эксплуатационных функций. Например, ленточный транспортер, который состоит из электродвигателя, редуктора, ведущего и ведомого барабанов и транспортерной ленты. Объединение этих изделий при сборке создает единую функциональную систему для выполнения транспортных операций.

Комплекты - два и более изделия не соединенных на предприятии – изготовителе сборочными операциями и представляющие собой набор изделий, которые имеют общее эксплуатационное назначение вспомогательного характера. Примерами являются наборы запасных инструментов и приспособлений (ЗИП), наборы слесарного инструмента и. т. д.

Наиболее сложным изделием является машина.

Машиной называется устройство, выполняющее механические движения по преобразованию материалов, энергии и информации для облегчения физического и умственного труда человека.

Порядок создания нового изделия

Новоё изделие имеет усовершенствованные технические и потребительские свойства. Процесссоздания нового изделия включает: выдачу технического задания, проведение научно-исследовательских и опытно-конструкторских работ (НИР и ОКР), проектирование изделия и производственную деятельность.

Техническое задание разрабатывает заказчик нового изделия. В нем приводятся сведения о назначении изделия, условиях его эксплуатации, технические и другие параметры необходимые для проектирования.

НИР проводится в том случае, если существующий уровень науки и техники не позволяет решить задачи, поставленные в техническом задании. НИР включает постановку задач исследования, проведение теоретических и экспериментальных исследований, обработку полученных результатов, выдачу рекомендаций и составление отчета. В результате проведения НИР получают новые научные результаты, которые используют при создании нового изделия с более высокими технико-экономическими показателями.

ОКР проводится для отработки конструкции изделия. ОКР включает проектирование, изготовление и испытания в лабораторных или производственных условиях опытных образцов изделий. В результате проверяются технические решения, на основе которых разрабатывается это изделие. Необходимость проведения НИР и ОКР определяется в техническом задании.

Проектирование изделия по ГОСТ 2.103 - 68 включает последовательную разработку технического предложения, эскизного проекта, технического проекта и рабочей конструкторской документация.

В техническом предложении (ГОСТ 2.118 - 73)рассматриваются вариант или варианты реализации требований технического задания.

Эскизный проект (ГОСТ 2.119 - 73)содержит решения, которые дают общее представление о конструкции и принципе работы изделия, с указанием его основных параметров, например габаритов.

Технический проект (ГОСТ 2.120 - 73) включает чертежи общих видов с детальной проработкой конструкции изделия, достаточной для создания комплекта рабочей документации

Рабочая конструкторская документация разрабатывается на основе ЕСКД. Она включает комплект чертежей на сборочные единицы, детали и другие документы необходимые для изготовления, сборки, упаковки, хранения и транспортировки изделия.

Производственный процесс

Производственная деятельность на предприятии называется производственным процессом.

Производственный процесс по ГОСТ 14.004 - 83 - это совокупность всех действий людей и орудий труда, необходимых на данном предприятии для изготовления и ремонта продукции.

Производственный процесс в машиностроении включает: организацию и управление производством, получение и хранение исходных материалов и полуфабрикатов, технологическую подготовку производства, изготовление и сборку изделий, контроль качества продукции, маркировку, упаковку и хранение готовых изделий, транспортировку продукции на всех этапах ее изготовления, снабжение и обслуживание рабочих мест, участков и цехов, обеспечение кадрами, т.е. рабочими, служащими, инженерно-техническими работниками (ИТР) и многое другоё.

Производственный процесс осуществляется на машиностроительном предприятии или заводе . На машиностроительных заводах используются самые разнообразные методы получения и обработки изделий: литьё, ковка, штамповка, сварка, обработка резанием, термообработка, сборка и.т.д. Однако, методы механической обработки заготовок резанием со снятием стружки и сборка изделий являются основными. Примерно до 60% от общего времени затрачивается на обработку этими методами. Поэтому производство на машиностроительных заводах называется еще механосборочным .

Основным производственным подразделением завода является цех . В состав машиностроительного завода входят самые разнообразные цеха, которые делятся на следующие группы:

1. Заготовительные цеха: литейные, кузнечные, сварочные. В литейных цехах производится получение отливок из черных и цветных металлов. В кузнечных цехах производится ковка и штамповка заготовок.

2. Основные или обрабатывающие цеха: механические, сборочные, термические и др.

3. Вспомогательные цеха: инструментальные, ремонтные, модельные и др.

Структура машиностроительного предприятия подробно изучается в курсе проектирование машиностроительного производства.

Заводские цеха поделены на производственные участки . Участок образован из рабочих мест .

Рабочее место по ГОСТ 14.004 - 83 является элементарной структурной единицей предприятия, где размещены исполнители работы, обслуживаемое технологическое оборудование, часть конвейера, на ограниченное время оснастка и предметы труда. Иными словами, рабочее место - это часть производственной площади, оборудованной в соответствии с выполняемой на ней работой.

Технологический процесс и его структура

Технологическим процессом называется часть производственного процесса, содержащая целенаправленные действия по изменению или определению состояния предмета труда.

В результате этих действий последовательно изменяются и контролируются размеры, форма, шероховатость и состояние поверхности, внешний вид и внутренние свойства изделий. В зависимости от вида действий различают технологические процессы механической обработки, сборки, литья, обработки давлением, термической обработки, нанесения покрытий и. т. д. Технологический процесс состоит из технологических операций.

Технологической операцией согласно ГОСТ 3.1109 - 82 называется законченная часть технологического процесса, выполняемая на одном рабочем месте.

Операция выполняется одним или несколькими исполнителями над одним изделием без перехода к обработке другого изделия. Операция может включать неоднократную установку и снятие заготовки, смену инструмента, вида обработки, приспособлений, контрольно-измерительных устройств и. т. д. При выполнении технологической операции заготовка может быть обработана полностью или только частично даже при одном виде обработки. Содержанием операции определяется трудоемкость ее выполнения и размер заработной платы рабочих.

В документации на технологический процесс наименование операции механической обработки записывается именем прилагательным в именительном падеже от вида оборудования, на котором выполняется данная операция. Например: токарная, фрезерная, сверлильная и. т. д. Нумеруются операции числами ряда арифметической прогрессии кратными 5. Например: 5, 10, 15 и. т. д. (ГОСТ 3.1129-93, п.5.3) . Это необходимо для резервирования позиций в случае внесения изменений в технологический процесс.

Последовательность технологических операций обработки или сборки изделий, записанных в порядке их выполнения, называетсятехнологическим маршрутом . Согласно ГОСТ 3.1109-82 технологическая операция состоит из следующих элементов:

Установ - это часть технологической операции, выполняемая при неизменном закреплении обрабатываемых заготовок или собираемой сборочной единицы. Если операция выполняется полностью при неизменном закреплении заготовки, то говорят, что она выполняется за один установ.

Технологический переход - это законченная часть технологической операции, которая выполняется одними и теми же средствами технологического оснащения при постоянных технологических режимах и положении заготовки.При механической обработке в пределах одного технологического перехода остаются неизменными: инструмент, приспособление, положение заготовки, и технологические режимы обработки, т.е. подача, скорость резания или частота вращения шпинделя. Наименование технологического перехода записывается глаголом в неопределенной форме, который соответствует методу механической обработки. Например: точить, сверлить, фрезеровать и. т. д.

Вспомогательный переход - это законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением свойств предмета труда, но необходимы для выполнения технологического перехода. Примерами вспомогательного перехода являются установка и снятие заготовки на станке, смена инструмента, взятие пробных стружек при настройке станка на размер и.т.д. Наименование вспомогательного перехода записывается глаголом в неопределенной форме, который соответствует выполняемому действию. Например, установить, снять, закрепить и т. д. В технологической документации технологические и вспомогательные переходы нумеруются цифрами 1, 2, 3,…

Структурными элементами технологического перехода являются рабочий ход и вспомогательный ход.

Рабочий ход - это законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, которая сопровождается изменениями формы, размеров, качества поверхности или свойств заготовки.

Вспомогательный ход - это законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, необходимого для подготовки рабочего хода. Примером вспомогательного хода является подвод инструмента к заготовке, перемещение его в исходное положение после выполнения рабочего хода и.т.д.

Структурным элементом перехода является прием.

Прием этозаконченная совокупность действий человека, необходимых для выполнения перехода или его части и объединенных одним целевым назначением. Например, вспомогательный переход «установить и снять заготовку» включает следующие приемы: взять заготовку, установить ее в приспособление, закрепить, открепить заготовку после обработки, снять заготовку со станка. Вспомогательный переход по замене инструмента включает такие приемы: взять инструмент, установить его в шпиндель станка, извлечь его из шпинделя.

При обработке заготовок на станках, где инструмент или заготовка закрепляются в поворотных устройствах, структурным элементом технологической операции является позиция.

Позиция - это фиксированное положение, занимаемое закрепленной заготовкой или собираемой сборочной единицей относительно инструмента или неподвижной части оборудования при выполнении определенной части операции. Иными словами позиция – это фиксированное положение заготовки и инструмента относительно друг друга на станках с поворотными устройствами, например, на токарно-револьверных станках. Изменение позиции производится поворотом, заготовки или инструмента относительно друг друга. В технологической документации позиции обозначаются римскими цифрами I, II, III и.т.д.

В технологической документации правила записи содержания операций и переходов при обработке резанием определены ГОСТ 3.1702 -79, согласно которому запись содержания операции выполняется в форме маршрутного или операционного описания. При операционном описании в записи операции отдельно выделяется содержание вспомогательных переходов. Запись вспомогательных переходов допускается не выполнять при наличии графических иллюстраций.

Согласно ГОСТ 3.1702-79 в содержание операции при маршрутном описании должно быть включено:

1. Ключевое слово, характеризующее метод обработки, выраженное глаголом в неопределенной форме, например: точить, сверлить, фрезеровать и. т. д. (приложение 3)

2. Дополнительная информация в виде указания количества последовательно или одновременно обрабатываемых поверхностей, например 4 отверстия (приложение 4, часть 1)

3. Дополнительная информация, характеризующая обрабатываемую поверхность, например, для отверстия: глухое, сквозное или для канавки - кольцевая (приложение 4, часть 2).

4. Наименование обрабатываемой поверхности, конструктивных элементов или предметов производства, например: поверхность, буртик, галтель, заготовка (приложение 5).

5. Информация по размерам или их условным обозначениям, например: размеры d 1 =…, d 2 =…, l 1 =…, l 2 =… или размеры 1, 2, 3, 4, пронумерованные на чертеже (приложение 6).

6. Дополнительная информация по характеру обработки, например: предварительно, окончательно, одновременно, последовательно, по копиру, согласно чертежу и. т. д. (приложение 4, часть 4).

Запись в указанном порядке называется полной и применяется при отсутствии графических иллюстраций к операции. При наличии графических иллюстраций применяют сокращенную запись. В этом случае в содержание операции включают п.п. 1; 4; 5.

При операционном описании запись содержания перехода включает:

1. Ключевое слово, выраженное глаголом в неопределенной форме, который соответствует методу механической обработки, например: точить, сверлить, фрезеровать. Для вспомогательного перехода ключевое слово записывается глаголом в неопределенной форме, который соответствует выполняемому действию, например, установить, снять, закрепить (приложение 3).

2. Наименование предметов производства, обрабатываемых поверхностей, конструктивных элементов, например, буртик, галтель, резьба (приложение 5).

3. Условное обозначение размеров и конструктивных элементов (приложение 6).

Рассмотрим структуру операции и ее запись на следующем примерах.

Пример 1. Пусть требуется получить отверстие в сплошной заготовке (без отверстия) по чертежу на рис. 5.1,а в размер d = 20Н8 . Отверстия такого размера и точности можно получить последовательной обработкой: сверлением, зенкерованием и развертыванием на вертикально-сверлильном станке.


При обработке используется следующая технология: заготовку устанавливают в самоцентрирующем трехкулачковом патроне, которым обеспечивается зажим заготовки и совмещение ее оси с осью шпинделя. В шпиндель устанавливают сверло диаметром 18 мм, которым сверлят отверстие в сплошном материале. Затем меняют сверло на зенкер и зенкеруют отверстие в размер 19,8 мм. Затем меняют зенкер на развертку, переключают частоту вращения шпинделя и развертывают отверстие в размер d = 20Н8 . Далее заготовку открепляют и снимают со станка. Эскиз операции приведен на рис. 5.1,б.

При маршрутном описании полная запись содержания операции будет выглядеть так:

005. Сверлильная.

d =18; d= 19,8; d = 20Н8 , последовательно ,согласно чертежу.

При сокращенной записи будем иметь

005. Сверлильная.

Сверлить, зенкеровать и развернуть отверстие d = 20Н8 .

При операционном описании полная запись содержания операции будет выглядеть следующим образом:

005 Сверлильная.

1. Установить и снять.

d =18.

d =19,8.

d =20Н8

Рассмотренная операция содержит три технологических перехода и ряд вспомогательных. При операционном описании вспомогательные переходы по установке и снятию заготовки принято объединять в один: «Установить и снять». Вспомогательные переходы по замене инструмента объединены с технологическими переходами и отдельно не прописаны. Приемы, входящие в состав этих переходов, перечислены выше. Все переходы выполняются последовательно. Каждый технологический переход состоит из рабочего хода, связанного с обработкой отверстия, например сверления, и вспомогательных ходов, связанных с подводом инструмента к заготовке и перемещением его в исходное положение. Кроме того, в технологические переходы включены приемы по включению (выключению) частоты вращения шпинделя и подачи инструмента.

Можно построить операцию с другой структурой, в которой все переходы будут выполняться параллельно. Для этого вертикально-сверлильный станок оснащается револьверным устройством в виде поворотного стола с четырьмя трехкулачковыми самоцентрирующими патронами и трехшпиндельной сверлильной головкой: первый шпиндель для сверла, второй для зенкера и третий для развертки. Общий вид многошпиндельной сверлильной головки показан на (рис. 5.2). Шпиндели имеют разную частоту вращения, но одинаковую вертикальную подачу. Обработка заготовок выполняется за один рабочий ход. шпинделя. Схема этой операции приведена на рис. 5.1,в. Согласно схеме, на данной операции обрабатываются одновременно три детали. Обработка производится следующим образом. В первой позиции производится установка заготовки и снятие уже готовой детали. Вторая, третья и четвертая позиции используются для сверления, зенкерования и развертывания. Перемещение детали из позиции в позицию производится с помощью поворотного стола. Позиции обозначены римскими цифрами. Таким образом, операция имеет параллельную структуру, т.к. все технологические переходы совмещены. Полная запись содержания операции при маршрутном описании выглядит следующим образом:

005 Сверлильная.

Сверлить, зенкеровать и развернуть сквозное отверстие, выдерживая размеры d =18; d= 19,8; d = 20Н8 , одновременно .

При операционном описании полная запись операции будет выглядеть так:

005 Сверлильная.

1. Установить и снять

Одновременно:

2. Сверлить отверстие, выдерживая размер d =18.

3. Зенкеровать отверстие, выдерживая размер d =19,8.

4. Развернуть отверстие, выдерживая размер d =20Н8.

Пример 2. Пусть требуется обработать валик по чертежу (рис. 5.4,а). Чертеж заготовки представлен на рис. 5.4, б. Операция выполняется за два установа.

Эскизы установов представлены на рис. 5.4, в; г.


Обработка ведется на токарном станке с установкой вала в центрах с поводковым патроном (рис 5.3). Передний центр установлен в шпиндель станка. Задний центр установлен в пиноль задней бабки. При маршрутном описании полная запись содержания операции будет выглядеть так:

005. Токарная.

Точить поверхности, выдерживая размеры 1-5 последовательно, согласно чертежу.

При операционном описании будем иметь следующую запись:

005. Токарная.

Установить и снять.

1. Точить поверхности, выдерживая размеры 3,4.

Переустановить

2. Точить поверхности, выдерживая размеры 1,2,5.