Атомный космический двигатель. Ядерные и плазменные ракетные двигатели

Атомный двигатель для космических ракет - казалось бы, далекая мечта писателей-фантастов - был, оказывается, не только разработан в сверхсекретных конструкторских бюро, но и изготовлен, а затем испытан на полигонах. "Это была нетривиальная работа", - говорит генеральный конструктор Воронежского федерального государственного предприятия "КБ химавтоматики" Владимир Рачук. В его устах "нетривиальная работа" означает очень высокую оценку сделанного.

"КБ химавтоматики", хотя и имеет отношение к химии (изготавливает насосы для соответствующих отраслей промышленности), на самом деле является одним из уникальных, ведущих в России и за рубежом центров ракетного двигателестроения. Предприятие было создано в Воронежской области в октябре 1941 года, когда гитлеровские войска рвались к Москве. В то время КБ разрабатывало агрегаты для боевой авиационной техники. Однако в пятидесятые годы коллектив переключился на новую перспективную тематику - жидкостные ракетные двигатели (ЖРД). "Изделия" из Воронежа были установлены на "Востоках", "Восходах", "Союзах", "Молниях", "Протонах"...
Здесь, в "КБ химавтоматики", создан и самый мощный в стране однокамерный кислородно-водородный космический "мотор" тягой в двести тонн. Он использовался в качестве маршевого двигателя на второй ступени ракетно-космического комплекса "Энергия-Буран". Воронежские ЖРД установлены на многих военных ракетах (например, SS-19, известных как "Сатана", или SS-N-23, запускаемых с подводных лодок). Всего было разработано около 60 образцов, 30 из которых доведено до серийного производства. В этом ряду наособицу стоит ядерный ракетный двигатель РД-0410, который создавался совместно со многими оборонными предприятиями, КБ и НИИ.
Один из основоположников отечественной космонавтики Сергей Павлович Королев рассказывал, что о силовой атомной установке для ракет мечтал еще с 1945 года. Очень заманчиво было использовать могучую энергию атома для покорения космического океана. Но в то время у нас и ракет-то не было. А в середине 50-х советские разведчики сообщили, что в США полным ходом идут исследования по созданию ядерного ракетного двигателя (ЯРД). Эта информация была сразу же доведена до высшего руководства страны. Скорее всего, с ней был ознакомлен и Королев. В 1956-м в секретном докладе о перспективах развития ракетной техники он подчеркивал, что ядерные двигатели будут иметь очень большие перспективы. Впрочем, все понимали, что реализация идеи сопряжена с огромными трудностями. Атомная электростанция, к примеру, занимает многоэтажный корпус. Задача состояла в том, чтобы превратить это большое здание в компактную установку величиной с два письменных стола. В 1959 году в Институте атомной энергии состоялась весьма знаменательная встреча "отца" нашей атомной бомбы Игоря Курчатова, директора Института прикладной математики, "главного теоретика космонавтики" Мстислава Келдыша и Сергея Королева. Фотография "трех К", трех выдающихся людей, прославивших страну, стала хрестоматийной. Но мало кто знает, что именно обсуждали они в тот день.
- Курчатов, Королев и Келдыш вели разговор о конкретных аспектах создания ядерного двигателя, - комментирует фотографию ведущий конструктор атомного "мотора" Альберт Белогуров, более 40 лет работающий в воронежском КБ. - Сама идея к тому времени уже не казалась фантастической. С 57-го, когда у нас появились межконтинентальные ракеты, конструкторы Средмаша (министерства, занимавшегося атомной тематикой) стали заниматься предварительными проработками ядерных двигателей. После встречи "трех К" эти исследования получили новый мощный импульс.
Атомщики трудились бок о бок с ракетчиками. Для ракетного двигателя взяли один из самых компактных реакторов. Внешне это сравнительно небольшой металлический цилиндр диаметром около 50 сантиметров и длиной примерно метр. Внутри - 900 тонких трубок, в которых находится "горючее" - уран. Принцип работы реактора сегодня известен и школьникам. Во время цепной реакции деления атомных ядер образуется огромное количество тепла. Мощные насосы прокачивают через пекло уранового котла водород, который нагревается до 3000 градусов. Затем раскаленный газ, вырываясь с огромной скоростью из сопла, создает мощную тягу...
На схеме все выглядело хорошо, но что покажут испытания? Обычные стенды для запуска полномасштабного ядерного двигателя не используешь - с радиацией шутки плохи. Реактор - это, по сути, атомная бомба, только замедленного действия, когда энергия выделяется не мгновенно, а в течение определенного времени. В любом случае необходимы особые меры предосторожности. Испытания реактора решили проводить на атомном полигоне в Семипалатинске, а первую часть конструкции (как бы сам двигатель) - на стенде в Подмосковье.
- В Загорске имеется превосходная база для наземных запусков ракетных двигателей, - поясняет Альберт Белогуров. - Мы изготовили около 30 образцов для стендовых испытаний. Водород сжигали в кислороде и затем газ направляли в двигатель - на турбину. Турбонасос перекачивал поток, но не в атомный реактор, как положено по схеме (реактора в Загорске, понятно, не было), а в атмосферу. Всего было проведено 250 испытаний. Программа завершилась полным успехом. В итоге получили работоспособный двигатель, отвечавший всем предъявленным требованиям. Сложнее оказалось организовать испытания ядерного реактора. Для этого необходимо было построить специальные шахты и другие сооружения на Семипалатинском полигоне. Столь масштабные работы были сопряжены, естественно, с большими финансовыми затратами, а получить деньги и в то время было непросто.
Тем не менее стройка на полигоне началась, хотя и велась, по словам Белогурова, "в экономном режиме". Не один год ушел на сооружение двух шахт и служебных помещений под землей. В бетонном бункере, расположенном между шахтами, находились чуткие приборы. В другом бункере, на удалении 800 метров, - пульт управления. Во время испытаний ядерного реактора пребывание людей в первом из названных помещений было категорически запрещено. В случае аварии стенд превратился бы в мощный источник радиации.
Перед экспериментальным запуском реактор аккуратно опускали в шахту с помощью установленного снаружи (на поверхности земли) козлового крана. Шахта была соединена с выдолбленной на глубине 150 метров в граните и облицованной сталью сферической емкостью. В такой необычный "резервуар" закачивали под большим давлением газообразный водород (для использования его в жидком виде, что, конечно же, эффективней, не было денег). После запуска реактора водород поступал снизу в урановый котел. Газ раскалялся до 3000 градусов и с грохотом огненной струей вырывался из шахты наружу. Сильной радиоактивности в этом потоке не было, но в течение суток находиться снаружи в радиусе полутора километров от места испытаний не разрешалось. К самой же шахте нельзя было подходить в течение месяца. Полуторакилометровый подземный тоннель, защищенный от проникновения радиации, вел из безопасной зоны сначала к одному бункеру, а из него - к другому, находящемуся возле шахт. По этим своеобразным длиннющим "коридорам" и передвигались специалисты.
Испытания реактора проводились в 1978-1981 годах. Результаты экспериментов подтвердили правильность конструктивных решений. В принципе ядерный ракетный двигатель был создан. Оставалось соединить две части и провести комплексные испытания ЯРД в собранном виде. Но на это денег уже не дали. Ибо в восьмидесятые годы практического использования в космосе атомных силовых установок не предусматривалось. Для старта с Земли они не годились, ибо окружающая местность подверглась бы сильному радиационному загрязнению. Ядерные двигатели вообще предназначены только для работы в космосе. И то на очень высоких орбитах (600 километров и выше), чтобы космический аппарат вращался вокруг Земли многие столетия. Потому что "период высвечивания" ЯРД составляет как минимум 300 лет. Собственно говоря, аналогичный двигатель американцы разрабатывали прежде всего для полета к Марсу. Но в начале восьмидесятых руководителям нашей страны было предельно ясно: полет к Красной планете нам не под силу (как, впрочем, и американцам, они тоже свернули эти работы). Однако именно в 1981-м у наших конструкторов появились новые перспективные идеи. Почему бы не использовать ядерный двигатель еще и в качестве энергетической установки? Проще говоря, вырабатывать на нем в космосе электроэнергию. При пилотируемом полете можно с помощью раздвижной штанги "отодвинуть" от жилых помещений, в которых находятся космонавты, урановый котел на расстояние до 100 метров. Будет он лететь вдали от станции. При этом получили бы очень мощный источник столь нужной на космических кораблях и станциях энергии. В течение 15 лет воронежцы вместе с атомщиками занимались этими перспективными исследованиями, проводили испытания на Семипалатинском полигоне. Государственного финансирования не было вообще, и все работы велись за счет заводских ресурсов и: энтузиазма. Сегодня мы имеем здесь очень солидный задел. Вопрос лишь в том, будут ли эти разработки востребованы.
- Обязательно, - уверенно отвечает генеральный конструктор Владимир Рачук. - Сегодня на космических станциях, кораблях и спутниках энергию получают от солнечных батарей. Но на ядерном реакторе выработка электричества намного дешевле - вдвое, а то и втрое. Кроме того, в тени Земли солнечные батареи не работают. Значит, нужны аккумуляторы, а это заметно увеличивает вес космического аппарата. Конечно, если речь идет о небольшой мощности, скажем, о 10-15 киловаттах, то проще иметь солнечные батареи. Но когда в космосе требуется 50 киловатт и больше, то без ядерной установки (которая, кстати, служит 10-15 лет) на орбитальной станции или межпланетном корабле не обойтись. Сейчас на такие заказы мы, откровенно говоря, не очень рассчитываем. Но в 2010-2020 годах ядерные двигатели, являющиеся одновременно мини-электростанциями, будут очень нужны.
- Сколько весит такая ядерная установка?
- Если говорить о двигателе РД- 0410, то масса его вместе с радиационной защитой и рамой крепления - две тонны. А тяга - 3,6 тонны. Выигрыш очевиден. Для сравнения: "Протоны" поднимают на орбиту и 20 тонн. А более мощные ядерные установки, конечно, будут повесомее - может быть, 5-7 тонн. Но в любом случае ядерные ракетные двигатели позволят выводить на стационарную орбиту грузы, имеющие в 2-2,5 раза большую массу, и обеспечат космические аппараты долговременной стабильной энергетикой.

Я не стал говорить с генеральным конструктором на больную тему - о том, что на Семипалатинском полигоне (нынче это территория другого государства) осталось немало ценного заводского оборудования, которое вернуть в Россию пока не удалось. Там же, в шахте, находится и один из испытательных атомных реакторов. Да и козловой кран все еще стоит на своем месте. Только вот испытания ядерного двигателя больше не проводятся: В собранном виде он стоит сейчас в заводском музее. Ждет своего часа.

Можно было бы начать эту статью традиционным пассажем про то, как писатели-фантасты выдвигают смелые идеи, а ученые потом воплощают их в жизнь. Можно, но писать штампами не хочется. Лучше вспомнить, что современные ракетные двигатели, твердотопливные и жидкостные, имеют более чем неудовлетворительные характеристики для полетов на относительно дальние дистанции. Вывести груз на орбиту Земли они позволяют, доставить что-то на Луну – тоже, хотя и обходится такой полет дороже. А вот полететь на Марс с такими двигателями уже нелегко. Им подавай горючее и окислитель в нужных объемах. И объемы эти прямо пропорциональны расстоянию, которое надо преодолеть.


Альтернатива традиционным химическим ракетным двигателям – двигатели электрические, плазменные и ядерные. Из всех альтернативных двигателей до стадии разработки двигателя дошла только одна система – ядерная (ЯРД). В Советском Союзе и в США еще в 50-х годах прошлого века были начаты работы по созданию ядерных ракетных двигателей. Американцы прорабатывали оба варианта такой силовой установки: реактивный и импульсный. Первая концепция подразумевает нагрев рабочего тела при помощи ядерного реактора с последующим выбросом через сопла. Имульсный ЯРД, в свою очередь, движет космический аппарат за счет последовательных взрывов небольшого количества ядерного топлива.

Также в США был придуман проект «Орион», соединявший в себе оба варианта ЯРД. Сделано это было следующим образом: из хвостовой части корабля выбрасывались небольшие ядерные заряды мощностью около 100 тонн в тротиловом эквиваленте. Вслед за ними отстреливались металлические диски. На расстоянии от корабля производился подрыв заряда, диск испарялся, и вещество разлеталось в разные стороны. Часть его попадала в усиленную хвостовую часть корабля и двигала его вперед. Небольшую прибавку к тяге должно было давать испарение плиты, принимающей на себя удары. Удельная стоимость такого полета должна была быть всего 150 тогдашних долларов на килограмм полезной нагрузки.

Дошло даже до испытаний: опыт показал, что движение при помощи последовательных импульсов возможно, как и создание кормовой плиты достаточной прочности. Но проект «Орион» был закрыт в 1965 году как неперспективный. Тем не менее, это пока единственная существующая концепция, которая может позволить осуществлять экспедиции хотя бы по Солнечной системе.

До строительства опытного экземпляра удалось дойти только реактивным ЯРД. Это были советский РД-0410 и американский NERVA. Они работали по одинаковому принципу: в «обычном» ядерном реакторе нагревается рабочее тело, которое при выбросе из сопел и создает тягу. Рабочим телом обоих двигателей был жидкий водород, но на советском в качестве вспомогательного вещества использовался гептан.

Тяга РД-0410 составляла 3,5 тонны, NERVA давал почти 34, однако имел и большие габариты: 43,7 метров длины и 10,5 в диаметре против 3,5 и 1,6 метров соответственно у советского двигателя. При этом американский двигатель в три раза проигрывал советскому по ресурсу – РД-0410 мог работать целый час.

Однако оба двигателя, несмотря на перспективность, тоже остались на Земле и никуда не летали. Главная причина закрытия обоих проектов (NERVA в середине 70-х, РД-0410 в 1985 году) – деньги. Характеристики химических двигателей хуже, чем у ядерных, но цена одного запуска корабля с ЯРД при одинаковой полезной нагрузке может быть в 8-12 раз больше пуска того же «Союза» с ЖРД. И это еще без учета всех расходов, необходимых для доведения ядерных двигателей до пригодности к практическому применению.

Вывод из эксплуатации «дешевых» Шаттлов и отсутствие в последнее время революционных прорывов в космической технике требует новых решений. В апреле этого года тогдашний глава Роскосмоса А. Перминов заявил о намерении разработать и ввести в эксплуатацию совершенно новый ЯРД. Именно это, по мнению Роскосмоса, должно кардинально улучшить «обстановку» во всей мировой космонавтике. Теперь же выяснилось, кто должен стать очередными революционерами космонавтики: разработкой ЯРД займется ФГУП «Центр Келдыша». Генеральный директор предприятия А. Коротеев уже обрадовал общественность о том, что эскизный проект космического корабля под новый ЯРД будет готов уже в следующем году. Проект двигателя должен быть готов к 2019, а испытания запланированы на 2025 год.

Комплекс получил название ТЭМ – транспортно-энергетический модуль. Он будет нести ядерный реактор с газовым охлаждением. С непосредственным движителем пока не определились: либо это будет реактивный двигатель наподобие РД-0410, либо электрический ракетный двигатель (ЭРД). Однако последний тип пока нигде в мире массово не применялся: ими оснащались всего три космических аппарата. Но в пользу ЭРД говорит тот факт, что от реактора можно запитывать не только двигатель, но и множество других агрегатов или вообще использовать весь ТЭМ как космическую электростанцию.

Советские и американские ученые разрабатывали ракетные двигатели на ядерном топливе с середины XX века. Дальше прототипов и единичных испытаний эти разработки не продвинулись, но сейчас единственная ракетная двигательная установка, которая использует ядерную энергию, создается в России. «Реактор» изучил историю попыток внедрения ядерных ракетных двигателей.

Когда человечество только начало покорять космос, перед учеными встала задача энергообеспечения космических аппаратов. Исследователи обратили внимание на возможность использования ядерной энергии в космосе, создав концепцию ядерного ракетного двигателя. Такой двигатель должен был использовать энергию деления или синтеза ядер для создания реактивной тяги.

В СССР уже в 1947 году начались работы по созданию ядерного ракетного двигателя. В 1953 году советские специалисты отмечали, что «использование атомной энергии позволит получить практически неограниченные дальности и резко снизить полетный вес ракет» (цитата по изданию «Ядерные ракетные двигатели » под редакцией А.С. Коротеева, М, 2001). Тогда двигательные установки на ядерной энергии предназначались, в первую очередь, для оснащения баллистических ракет, поэтому интерес правительства к разработкам был большим. Президент США Джон Кеннеди в 1961 году назвал национальную программу по созданию ракеты с ядерным ракетным двигателем (Project Rover) одним из четырех приоритетных направлений в завоевании космоса.

Реактор KIWI, 1959 год. Фото: NASA.

В конце 1950-х американские ученые создали реакторы KIWI. Они много раз были испытаны, разработчики сделали большое количество модификаций. Часто при испытаниях происходили неудачи, например, однажды произошло разрушение активной зоны двигателя и обнаружилась большая утечка водорода.

В начале 1960-х как в США, так и в СССР были созданы предпосылки для реализации планов по созданию ядерных ракетных двигателей, но каждая страна шла своей дорогой. США создавали много конструкций твердофазных реакторов для таких двигателей и испытывали их на открытых стендах. СССР вел отработку тепловыделяющей сборки и других элементов двигателя, готовя производственную, испытательную, кадровую базу для более широкого «наступления».

Схема ЯРД NERVA. Иллюстрация: NASA.

В США уже в 1962 году президент Кеннеди заявил, что «ядерная ракета не будет применяться в первых полетах на Луну», поэтому стоит направлять средства, выделяемые на освоение космоса, на другие разработки. На рубеже 1960-1970-х были испытаны еще два реактора (PEWEE в 1968 году и NF-1 в 1972 году) в рамках программы NERVA . Но финансирование было сосредоточено на лунной программе, поэтому программа США по созданию ядерных двигателей сокращалась в объеме, и в 1972 году была закрыта.

Фильм NASA про ядерный реактивный двигатель NERVA.

В Советском Союзе разработки ядерных ракетных двигателей продолжались до 1970-х годов, а руководила ими известнейшая ныне триада отечественных ученых-академиков: Мстислав Келдыш, Игорь Курчатов и . Они оценивали возможности создания и применения ракет с ядерными двигателями достаточно оптимистично. Казалось, что вот-вот, и СССР запустит такую ракету. Прошли огневые испытания на Семипалатинском полигоне - в 1978 году состоялся энергетический пуск первого реактора ядерного ракетного двигателя 11Б91 (или РД-0410), потом еще две серии испытаний - второго и третьего аппаратов 11Б91-ИР-100. Это были первые и последние советские ядерно-ракетные двигатели.

М.В. Келдыш и С.П. Королев в гостях у И.В. Курчатова, 1959 г.

Нашёл интересную статью. Вообще атомные космические корабли меня всегда интересовали. Это будущее космонавтики. Обширные работы по этой тематике велись и в СССР. В статье как раз про них.

В космос на атомной тяге. Мечты и реальность.

доктор физико-математических наук Ю. Я. Стависский

В 1950 году я защитил диплом инженера-физика в Московском механическом институте (ММИ) Министерства боеприпасов. Пятью годами раньше, в 1945-м, там был образован инженерно-физический факультет, готовивший специалистов для новой отрасли, в задачи которой входило в основном производство ядерного боеприпаса. Факультет не имел себе равных. Наряду с фундаментальной физикой в объёме университетских курсов (методы математической физики, теория относительности, квантовая механика, электродинамика, статистическая физика и другие) нам преподавали полный набор инженерных дисциплин: химию, металловедение, сопротивление материалов, теорию механизмов и машин и пр. Созданный выдающимся советским физиком Александром Ильичём Лейпунским инженерно-физический факультет ММИ вырос со временем в Московский инженерно-физический институт (МИФИ). Другой инженерно-физический факультет, также влившийся впоследствии в МИФИ, был сформирован в Московском энергетическом институте (МЭИ), но если в ММИ основной упор делался на фундаментальную физику, то в Энергетическом — на тепло- и электрофизику.

Квантовую механику мы изучали по книге Дмитрия Ивановича Блохинцева. Каково же было моё удивление, когда при распределении меня направили к нему на работу. Я, заядлый экспериментатор (в детстве разобрал все часы в доме), и вдруг попадаю к известному теоретику. Меня охватила лёгкая паника, но по прибытии на место — „Объект В“ МВД СССР в Обнинске — сразу понял, что волновался напрасно.

К этому времени основная тематика „Объекта В“, во главе которого до июня 1950 года фактически стоял А.И. Лейпунский, уже сформировалась. Здесь создавали реакторы с расширенным воспроизводством ядерного горючего — „быстрые бридеры“. На посту директора Блохинцев инициировал развитие нового направления — создание двигателей на атомной тяге для космических полётов. Овладение космосом было давней мечтой Дмитрия Ивановича, ещё в юности он переписывался и встречался с К.Э. Циолковским. Я думаю, что понимание гигантских возможностей ядерной энергии, по теплотворной способности в миллионы раз превышающей лучшие химические топлива, и определило жизненный путь Д.И. Блохинцева.
„Лицом к лицу лица не увидать“… В те годы мы многого не понимали. Только сейчас, когда наконец-то появилась возможность сопоставить дела и судьбы выдающихся учёных Физико-энергетического института (ФЭИ) — бывшего „Объекта В“, переименованного 31 декабря 1966 года — складывается верное, как мне кажется, понимание идей, двигавших ими в то время. При всём многообразии дел, которыми приходилось заниматься институту, можно выделить приоритетные научные направления, оказавшиеся в сфере интересов его ведущих физиков.

Главный интерес АИЛа (так в институте за глаза называли Александра Ильича Лейпунского) — развитие глобальной энергетики на основе быстрых реакторов-бридеров (ядерных реакторов, не имеющих ограничений в ресурсах ядерного горючего). Трудно переоценить значение этой поистине „космической“ проблемы, которой он посвятил последние четверть века своей жизни. Немало сил Лейпунский потратил и на оборону страны, в частности на создание атомных двигателей для подводных лодок и тяжелых самолётов.

Интересы Д.И. Блохинцева (за ним закрепилось прозвище „Д. И.“) были направлены на решение проблемы использования ядерной энергии для космических полётов. К сожалению, в конце 1950-х годов он был вынужден оставить эту работу и возглавить создание международного научного центра — Объединённого института ядерных исследований в Дубне. Там он занимался импульсными быстрыми реакторами — ИБР. Это стало последним большим делом его жизни.

Одна цель — одна команда

Д.И. Блохинцев, преподававший в конце 1940-х в МГУ, приметил там, а затем пригласил на работу в Обнинск молодого физика Игоря Бондаренко, который буквально бредил космическими кораблями на атомной тяге. Первым его научным руководителем был А.И. Лейпунский, и Игорь, естественно, занимался его тематикой — быстрыми бридерами.

При Д.И. Блохинцеве вокруг Бондаренко сформировалась группа учёных, которые объединились, чтобы решить проблемы использования атомной энергии в космосе. Кроме Игоря Ильича Бондаренко в группу входили: Виктор Яковлевич Пупко, Эдвин Александрович Стумбур и автор этих строк. Главным идеологом был Игорь. Эдвин проводил экспериментальные исследования наземных моделей ядерных реакторов космических установок. Я занимался в основном ракетными двигателями „малой тяги“ (тяга в них создаётся своеобразным ускорителем — „ионным движителем“, который питается энергией от космической атомной электростанции). Мы исследовали процессы,
протекающие в ионных движителях, на наземных стендах.

На Викторе Пупко (в будущем
он стал начальником отделения космической техники ФЭИ) лежала большая организационная работа. Игорь Ильич Бондаренко был выдающимся физиком. Он тонко чувствовал эксперимент, ставил простые, изящные и весьма эффективные опыты. Я думаю, как ни один экспериментатор, да, пожалуй, и немногие теоретики, „чувствовал“ фундаментальную физику. Всегда отзывчивый, открытый и доброжелательный, Игорь был поистине душой института. До сих пор ФЭИ живёт его идеями. Бондаренко прожил неоправданно короткую жизнь. В 1964-м, в возрасте 38 лет, он трагически погиб из-за врачебной ошибки. Как будто Бог, увидев, как много человек сделал, решил, что это уже чересчур и скомандовал: „Хватит“.

Нельзя не вспомнить ещё одну уникальную личность — Владимира Александровича Малыха, технолога „от Бога“, современного лесковского Левшу. Если „продукцией“ упомянутых выше учёных были в основном идеи и расчётные оценки их реальности, то работы Малыха всегда имели выход „в металле“. Его технологический сектор, насчитывавший во времена расцвета ФЭИ более двух тысяч сотрудников, мог сделать, без преувеличения, всё. Причём ключевую роль всегда играл он сам.

В.А. Малых начинал лаборантом в НИИ ядерной физики МГУ, имея за душой три курса физфака, — доучиться не дала война. В конце 1940-х годов ему удалось создать технологию изготовления технической керамики на основе окиси бериллия — материала уникального, диэлектрика с высокой теплопроводностью. До Малыха многие безуспешно бились над этой проблемой. А топливный элемент на основе серийной нержавеющей стали и природного урана, разработанный им для первой атомной электростанции, — чудо по тем да и по нынешнем временам. Или созданный Малыхом термоэмиссионный топливный элемент реактора-электрогенератора для питания космических аппаратов — „гирлянда“. До сих пор в этой области не появилось ничего лучшего. Творения Малыха были не демонстрационными игрушками, а элементами ядерной техники. Они работали месяцы и годы. Владимир Александрович стал доктором технических наук, лауреатом Ленинской премии, Героем Социалистического Труда. В 1964 году он трагически погиб от последствий военной контузии.

Шаг за шагом

С.П. Королёв и Д.И. Блохинцев с давних пор вынашивали мечту о полёте человека в космос. Между ними установились тесные рабочие связи. Но в начале 1950-х годов, в разгар „холодной войны“, средств не жалели только на военные цели. Ракетная техника рассматривалась лишь как носитель ядерных зарядов, а о спутниках и не помышляли. Между тем Бондаренко, зная о последних достижениях ракетчиков, настойчиво выступал за создание искусственного спутника Земли. Впоследствии об этом никто и не вспомнил.

Любопытна история создания ракеты, поднявшей в космос первого космонавта планеты — Юрия Гагарина. Связана она с именем Андрея Дмитриевича Сахарова. В конце 1940-х годов он разработал комбинированный делительно-термоядерный заряд — „слойку“, видимо, независимо от „отца водородной бомбы“ Эдварда Теллера, который предложил аналогичное изделие под названием „будильник“. Однако вскоре Теллер понял, что ядерный заряд такой схемы будет иметь „ограниченную“ мощность, не более ~ 500 килотонн толового эквивалента. Для „абсолютного“ оружия этого мало, поэтому „будильник“ был заброшен. В Союзе же в 1953 году взорвали сахаровскую слойку РДС-6с.

После успешных испытаний и избрания Сахарова в академики тогдашний глава Минсредмаша В.А. Малышев пригласил его к себе и поставил задачу определить параметры бомбы следующего поколения. Андрей Дмитриевич оценил (без детальной проработки) вес нового, значительно более мощного заряда. Докладная Сахарова легла в основу постановления ЦК КПСС и Совета Министров СССР, которое обязало С.П. Королёва разработать под этот заряд баллистическую ракету-носитель. Именно такая ракета Р-7 под названием „Восток“ и вывела на орбиту искусственный спутник Земли в 1957-м и космический корабль с Юрием Гагариным в 1961-м. Использовать её как носитель тяжёлого ядерного заряда тогда уже не планировали, поскольку развитие термоядерного оружия пошло иным путём.

На начальном этапе космической ядерной программы ФЭИ совместно с КБ В.Н. Челомея разрабатывал крылатую атомную ракету. Это направление развивалось недолго и завершилось расчётами и испытанием элементов двигателя, созданного в отделении В.А. Малыха. По сути, речь шла о низколетящем беспилотном самолете с прямоточным ядерным двигателем и ядерной боеголовкой (своего рода ядерный аналог „жужжащего клопа“ — немецкой V-1). Система стартовала с помощью обычных ракетных ускорителей. После выхода на заданную скорость тяга создавалась атмосферным воздухом, нагреваемым за счёт цепной реакции деления окиси бериллия, пропитанной обогащённым ураном.

Вообще говоря, возможность выполнения ракетой той или иной задачи космонавтики определяется скоростью, которую она приобретает после использования всего запаса рабочего тела (топлива и окислителя). Её вычисляют по формуле Циолковского: V = c×lnMн/ Мк, где с — скорость истечения рабочего тела, а Мн и Мк — начальная и конечная масса ракеты. В обычных химических ракетах скорость истечения определяется температурой в камере сгорания, видом топлива и окислителя и молекулярным весом продуктов сгорания. Например, американцы для высадки астронавтов на Луну использовали в спускаемом аппарате в качестве топлива водород. Продукт его сгорания — вода, чей молекулярный вес сравнительно низок, и скорость истечения в 1,3 раза выше, чем при сжигании керосина. Этого достаточно, чтобы спускаемый аппарат с космонавтами достиг поверхности Луны и затем вернул их на орбиту её искусственного спутника. У Королёва работы с водородным топливом были приостановлены из-за аварии с человеческими жертвами. Создать лунный спускаемый аппарат для человека мы не успели.

Один из путей существенного повышения скорости истечения — создание ядерных термических ракет. У нас это были баллистические атомные ракеты (БАР) с радиусом действия несколько тысяч километров (совместный проект ОКБ-1 и ФЭИ), у американцев — аналогичные системы типа „Киви“. Двигатели испытывались на полигонах под Семипалатинском и в Неваде. Принцип их действия следующий: водород нагревается в ядерном реакторе до высоких температур, переходит в атомарное состояние и уже в таком виде истекает из ракеты. Скорость истечения при этом повышается более чем вчетверо по сравнению с химической водородной ракетой. Вопрос состоял в том, чтобы выяснить, до какой температуры можно нагреть водород в реакторе с твёрдыми топливными элементами. Расчёты давали около 3000°К.

В НИИ-1, научным руководителем которого был Мстислав Всеволодович Келдыш (тогда президент Академии наук СССР), отдел В.М. Иевлева с участием ФЭИ занимался совсем уж фантастической схемой — газофазным реактором, в котором цепная реакция протекает в газовой смеси урана и водорода. Из такого реактора водород истекает ещё раз в десять быстрее, чем из твёрдотопливного, уран же сепарируется и остаётся в активной зоне. Одна из идей предполагала использование центробежной сепарации, когда горячая газовая смесь урана и водорода „закручивается“ поступающим холодным водородом, в результате чего уран и водород разделяются, как в центрифуге. Иевлев пытался, по сути дела, прямо воспроизвести процессы в камере сгорания химической ракеты, используя в качестве источника энергии не теплоту сгорания топлива, а цепную реакцию деления. Это открывало путь к полному использованию энергоёмкости атомных ядер. Но вопрос о возможности истечения из реактора чистого водорода (без урана) так и остался нерешённым, не говоря уже о технических проблемах, связанных с удержанием высокотемпературных газовых смесей при давлениях в сотни атмосфер.

Работы ФЭИ по баллистическим атомным ракетам завершились в 1969-1970 годах „огневыми испытаниями“ на семипалатинском полигоне прототипа ядерного ракетного двигателя с твёрдыми топливными элементами. Его создавал ФЭИ в кооперации с воронежским КБ А.Д. Конопатова, московским НИИ-1 и рядом других технологических групп. Основу двигателя с тягой 3,6 т составлял ядерный реактор ИР-100 с топливными элементами из твёрдого раствора карбида урана и карбида циркония. Температура водорода достигала 3000°К при мощности реактора ~ 170 МВт.

Атомные ракеты малой тяги

До сих пор речь шла о ракетах с тягой, превышающей их вес, которые могли бы стартовать с поверхности Земли. В таких системах увеличение скорости истечения позволяет снизить запас рабочего тела, повысить полезную нагрузку и отказаться от многоступенчатости. Однако есть пути достижения практически неограниченных скоростей истечения, например ускорение вещества электромагнитными полями. Я занимался этим направлением в тесном контакте с Игорем Бондаренко почти 15 лет.

Ускорение ракеты с электрореактивным двигателем (ЭРД) определяется отношением удельной мощности установленной на них космической атомной электростанции (КАЭС) к скорости истечения. В обозримом будущем удельные мощности КАЭС, судя по всему, не превысят 1 кВт/кг. При этом возможно создание ракет с малой тягой, в десятки и сотни раз меньшей веса ракеты, и с очень малым расходом рабочего тела. Такая ракета может стартовать только с орбиты искусственного спутника Земли и, медленно ускоряясь, достигать больших скоростей.

Для полётов в пределах Солнечной системы нужны ракеты со скоростью истечения 50-500 км/с, а для полётов к звёздам — выходящие за пределы нашего воображения „фотонные ракеты“ со скоростью истечения, равной скорости света. Чтобы осуществить сколько-нибудь разумный по времени дальний космический полёт, необходимы невообразимые удельные мощности энергетических установок. Пока нельзя даже представить, на каких физических процессах они могут быть основаны.

Проведенные расчёты показали, что во время Великого противостояния, когда Земля и Марс находятся ближе всего друг к другу, можно за один год осуществить полёт ядерного космического корабля с экипажем к Марсу и возвратить его на орбиту искусственного спутника Земли. Полный вес такого корабля — около 5 т (включая запас рабочего тела — цезия, равный 1,6 т). Он определяется в основном массой КАЭС мощностью 5 МВт, а реактивная тяга — двухмегаваттным пучком ионов цезия с энергией 7 килоэлектронвольт *. Корабль стартует с орбиты искусственного спутника Земли, выходит на орбиту спутника Марса, а спускаться на его поверхность придётся уже на аппарате с водородным химическим двигателем, подобным американскому лунному.

Этому направлению, основанному на технических решениях, возможных уже сегодня, был посвящён большой цикл работ ФЭИ.

Ионные движители

В те годы обсуждались пути создания различных электрореактивных движителей для космических аппаратов, таких, как „плазменные пушки“, электростатические ускорители „пыли“ или капель жидкости. Однако ни одна из идей не имела под собой чёткой физической основы. Находкой оказалась поверхностная ионизация цезия.

Ещё в 20-е годы прошлого века американский физик Ирвинг Лэнгмюр открыл поверхностную ионизацию щелочных металлов. При испарении атома цезия с поверхности металла (в нашем случае — вольфрама), у которого работа выхода электронов больше потенциала ионизации цезия, он практически в 100% случаев теряет слабо связанный электрон и оказывается однократно заряженным ионом. Таким образом, поверхностная ионизация цезия на вольфраме и есть тот физический процесс, который позволяет создать ионный движитель с почти 100-процентным использованием рабочего тела и с энергетическим КПД, близким к единице.

Большую роль в создании моделей ионного движителя такой схемы сыграл наш коллега Сталь Яковлевич Лебедев. Своим железным упорством и настойчивостью он преодолевал все преграды. В результате удалось воспроизвести в металле плоскую трёхэлектродную схему ионного движителя. Первый электрод — пластина вольфрама размером примерно 10×10 см с потенциалом +7 кВ, второй — сетка из вольфрама с потенциалом -3 кВ, третий — сетка из торированного вольфрама с нулевым потенциалом. „Молекулярная пушка“ давала пучок паров цезия, который сквозь все сетки попадал на поверхность вольфрамовой пластины. Уравновешенная и откалиброванная металлическая пластина, так называемые весы, служила для измерения „силы“, т. е. тяги ионного пучка.

Ускоряющее напряжение до первой сетки разгоняет ионы цезия до 10 000 эВ, тормозящее напряжение до второй замедляет их до 7000 эВ. Это та энергия, с которой ионы должны покидать движитель, что соответствует скорости истечения 100 км/с. Но пучок ионов, ограниченный объёмным зарядом, не может „выйти в открытый космос“. Объёмный заряд ионов необходимо скомпенсировать электронами, чтобы образовалась квазинейтральная плазма, которая беспрепятственно распространяется в пространстве и создаёт реактивную тягу. Источником электронов для компенсации объёмного заряда ионного пучка служит нагреваемая током третья сетка (катод). Вторая, „запирающая“ сетка не даёт электронам попасть с катода на вольфрамовую пластину.

Первый опыт с моделью ионного движителя положил начало более чем десятилетним работам. Одна из последних моделей — с пористым вольфрамовым эмиттером, созданная в 1965 году, давала „тягу“ около 20 г при токе ионного пучка 20 А, имела коэффициент использования энергии около 90% и вещества — 95%.

Прямое преобразование ядерного тепла в электричество

Пути прямого преобразования энергии ядерного деления в электрическую пока не найдены. Мы ещё не можем обойтись без промежуточного звена — тепловой машины. Поскольку её КПД всегда меньше единицы, „отработанное“ тепло нужно куда-то девать. На земле, в воде и в воздухе с этим проблем нет. В космосе же существует только один путь — тепловое излучение. Таким образом, КАЭС не может обойтись без „холодильника-излучателя“. Плотность же излучения пропорциональна четвёртой степени абсолютной температуры, поэтому температура холодильника-излучателя должна быть как можно более высокой. Тогда удастся сократить площадь излучающей поверхности и соответственно массу энергетической установки. У нас появилась идея использовать „прямое“ преобразование ядерного тепла в электричество, без турбины и генератора, что казалось более надёжным при длительной работе в области высоких температур.

Из литературы мы знали о работах А.Ф. Иоффе — основателя советской школы технической физики, пионера в исследовании полупроводников в СССР. Мало кто теперь помнит о разработанных им источниках тока, применявшихся в годы Великой Отечественной войны. Тогда не один партизанский отряд имел связь с Большой землёй благодаря „керосиновым“ ТЭГам — термоэлектрогенераторам Иоффе. „Венец“ из ТЭГов (он представлял собой набор полупроводниковых элементов) надевался на керосиновую лампу, а его провода подсоединялись к радиоаппаратуре. „Горячие“ концы элементов нагревались пламенем керосиновой лампы, „холодные“ — остывали на воздухе. Поток тепла, проходя через полупроводник, порождал электродвижущую силу, которой хватало для сеанса связи, а в промежутках между ними ТЭГ заряжал аккумулятор. Когда через десять лет после Победы мы побывали на московском заводе ТЭГов, оказалось, что они ещё находят сбыт. У многих деревенских жителей были тогда экономичные радиоприемники „Родина“ на лампах прямого накала, работающие от батареи. Вместо них зачастую использовали ТЭГи.

Беда керосинового ТЭГа — его низкий КПД (всего около 3,5%) и невысокая предельная температура (350°К). Но простота и надёжность этих приборов привлекали разработчиков. Так, полупроводниковые преобразователи, разработанные группой И.Г. Гвердцители в Сухумском физико-техническом институте, нашли применение в космических установках типа „Бук“.

В свое время А.Ф. Иоффе предложил ещё один термоэмиссионный преобразователь — диод в вакууме. Принцип его действия следующий: нагретый катод испускает электроны, часть их, преодолевающая потенциал анода, совершает работу. От этого прибора ожидали значительно большего КПД (20-25%) при рабочей температуре выше 1000°К. Кроме того, в отличие от полупроводника вакуумный диод не боится нейтронного излучения, и его можно совместить с ядерным реактором. Однако оказалось, что осуществить идею „вакуумного“ преобразователя Иоффе невозможно. Как и в ионном движителе, в вакуумном преобразователе нужно избавиться от объёмного заряда, но на этот раз не ионов, а электронов. А.Ф. Иоффе предполагал использовать в вакуумном преобразователе микронные зазоры между катодом и анодом, что в условиях высоких температур и термических деформаций практически невозможно. Вот тут-то и пригодился цезий: один ион цезия, полученный за счёт поверхностной ионизации на катоде, компенсирует объёмный заряд около 500 электронов! По сути дела, цезиевый преобразователь — это „обращённый“ ионный движитель. Физические процессы в них близки.

«Гирлянды» В.А. Малыха

Одним из результатов работ ФЭИ над термоэмиссионными преобразователями были создание В.А. Малыхом и серийный выпуск в его отделении тепловыделяющих элементов из последовательно соединённых термоэмиссионных преобразователей — „гирлянд“ для реактора „Топаз“. Они давали до 30 В — раз в сто больше, чем одноэлементные преобразователи, созданные „конкурирующими организациями“ — ленинградской группой М.Б. Барабаша и позднее — Институтом атомной энергии. Это позволяло „снимать“ с реактора в десятки и сотни раз большую мощность. Однако надёжность системы, напичканной тысячами термоэмиссионных элементов, вызывала опасения. В то же время паро- и газотурбинные установки работали без сбоев, поэтому мы обратили внимание и на „машинное“ преобразование ядерного тепла в электричество.

Вся трудность заключалась в ресурсе, ведь в дальних космических полётах турбогенераторы должны работать год, два, а то и несколько лет. Чтобы уменьшить износ, „обороты“ (скорость вращения турбины) нужно сделать по возможности более низкими. С другой стороны, турбина работает эффективно, если скорость молекул газа или пара близка к скорости её лопаток. Поэтому сначала мы рассматривали применение самого тяжёлого — ртутного пара. Но нас испугала интенсивная радиационно-стимулированная коррозия железа и нержавеющей стали, которая возникала в охлаждаемом ртутью ядерном реакторе. За две недели коррозия „съела“ тепловыделяющие элементы опытного быстрого реактора „Клементина“ в Аргонской лаборатории (США, 1949 год) и реактора БР-2 в ФЭИ (СССР, Обнинск, 1956 год).

Заманчивым оказался калиевый пар. Реактор с кипящим в нём калием лёг в основу разрабатываемой нами энергетической установки космического корабля малой тяги — калиевый пар вращал турбогенератор. Такой „машинный“ способ преобразования тепла в электричество позволял рассчитывать на КПД до 40%, в то время как реальные термоэмиссионные установки давали кпд всего около 7%. Однако КАЭС с „машинным“ преобразованием ядерного тепла в электричество не получили развития. Дело завершилось выпуском подробного отчёта, по сути — „физической записки“ к техническому проекту космического корабля малой тяги для полёта с экипажем к Марсу. Сам проект так и не был разработан.

В дальнейшем, я думаю, просто пропал интерес к космическим полётам с использованием ядерных ракетных двигателей. После смерти Сергея Павловича Королёва поддержка работ ФЭИ по ионным движителям и „машинным“ ядерно-энергетическим установкам заметно ослабла. ОКБ-1 возглавил Валентин Петрович Глушко, у которого не было интереса к смелым перспективным проектам. Созданное им ОКБ „Энергия“ строило мощные химические ракеты и возвращаемый на Землю космический корабль „Буран“.

«Бук» и «Топаз» на спутниках серии «Космос»

Работы по созданию КАЭС с прямым преобразованием тепла в электричество, теперь уже в качестве источников питания для мощных радиотехнических спутников (космических радиолокационных станций и телетрансляторов), продолжались до начала перестройки. С 1970 по 1988 год в космос запустили около 30 радиолокационных спутников с ядерно-энергетическими установками „Бук“ с полупроводниковыми реакторами-преобразователями и два — с термоэмиссионными установками „Топаз“. „Бук“, по сути дела, представлял собой ТЭГ — полупроводниковый преобразователь Иоффе, только вместо керосиновой лампы в нём использовался ядерный реактор. Это был быстрый реактор мощностью до 100 кВт. Полная загрузка высокообогащённого урана составляла около 30 кг. Тепло из активной зоны передавалось жидким металлом — эвтектическим сплавом натрия с калием полупроводниковым батареям. Электрическая мощность достигала 5 кВт.

Установку „Бук“ под научным руководством ФЭИ разрабатывали специалисты ОКБ-670 М.М. Бондарюка, позднее — НПО „Красная звезда“ (главный конструктор — Г.М. Грязнов). Создать ракету-носитель для вывода спутника на орбиту поручили днепропетровскому КБ „Южмаш“ (главный конструктор — М.К. Янгель).

Время работы „Бука“ — 1-3 месяца. Если установка отказывала, спутник переводили на орбиту длительного существования высотой 1000 км. За почти 20 лет запусков было три случая падения спутника на Землю: два — в океан и один — на сушу, в Канаде, в окрестности Большого Невольничьего озера. Туда упал „Космос-954“, запущенный 24 января 1978 года. Он проработал 3,5 месяца. Урановые элементы спутника полностью сгорели в атмосфере. На земле нашли лишь остатки бериллиевого отражателя и полупроводниковых батарей. (Все эти данные приведены в совместном отчёте атомных комиссий США и Канады об операции „Утренний свет“.)

В термоэмиссионной ядерно-энергетической установке „Топаз“ использовался тепловой реактор мощностью до 150 кВт. Полная загрузка урана составляла около 12 кг — значительно меньше, чем у „Бука“. Основой реактора были тепловыделяющие элементы — „гирлянды“, разработанные и изготовленные группой Малыха. Они представляли собой цепочку термоэлементов: катод — „напёрсток“ из вольфрама или молибдена, заполненный окисью урана, анод — тонкостенная трубка из ниобия, охлаждаемая жидким натрий-калием. Температура катода достигала 1650°C. Электрическая мощность установки доходила до 10 кВт.

Первый лётный образец — спутник „Космос-1818“ с установкой „Топаз“ вышел на орбиту 2 февраля 1987 года и безотказно проработал полгода, до исчерпания запасов цезия. Второй спутник — „Космос-1876“ был запущен через год. Он отработал на орбите почти в два раза дольше. Главным разработчиком „Топаза“ было ОКБ ММЗ „Союз“, возглавляемое С.К. Туманским (бывшее КБ конструктора авиамоторов А.А. Микулина).

Это было в конце 1950-х годов, когда мы занимались ионным движителем, а он — двигателем третьей ступени, предназначавшимся для ракеты, которой предстояло облететь Луну и совершить посадку на неё. Воспоминания о мельниковской лаборатории свежи и поныне. Она располагалась в Подлипках (ныне г. Королёв), на площадке № 3 ОКБ-1. Огромный цех площадью около 3000 м2, уставленный десятками письменных столов со шлейфными осциллографами, производящими запись на 100-миллиметровой рулонной бумаге (это была ещё прошлая эпоха, сегодня хватило бы одного персонального компьютера). У передней стены цеха — стенд, где монтируется камера сгорания двигателя „лунной“ ракеты. К осциллографам идут тысячи проводов от датчиков скорости газов, давления, температуры и других параметров. День начинается в 9.00 с зажигания двигателя. Он работает несколько минут, затем сразу после остановки бригада механиков первой смены разбирает его, тщательно осматривает и измеряет камеру сгорания. Одновременно анализируются ленты осциллографов и вырабатываются рекомендации по изменениям конструкции. Вторая смена — конструкторы и рабочие мастерских вносят рекомендованные изменения. В третью смену на стенде монтируются новая камера сгорания и система диагностики. Через сутки, ровно в 9.00, — следующий сеанс. И так без выходных недели, месяцы. Более 300 вариантов двигателя за год!

Так создавались двигатели химических ракет, которым предстояло работать всего 20-30 минут. Что же говорить об испытаниях и доработках ядерно-энергетических установок — расчёт был на то, что они должны работать не один год. Это требовало поистине гигантских усилий.

ЯДЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЯРД) , атомный ракетный двигатель - ракетный двигатель , работающий на ядерном ракетном топливе . Достоинство ЯРД - в высоком удельном импульсе тяги , недостижимом для химических РД. Это объясняется возможностью выбора в качестве рабочего тела РД низкомолекулярных веществ (прежде всего жидкого водорода) и большой энергией ядерных реакций. ЯРД классифицируются по виду происходящих реакций, способу использования выделяющейся энергии и т. д.

В начале 80-х гг. основной тип ЯРД - твердофазный - с твердофазным реактором деления. В нём тепловая энергия продуктов деления ядерного горючего, находящегося в твёрдом состоянии, используется для превращения исходного рабочего тела в высокотемпературный газ, при истечении которого из реактивного сопла создаётся тяга. По аналогии с ЖРД рабочее тело ЯРД хранится в жидком состоянии в баке ДУ, и его подача производится при помощи ТНА. Газ для привода последнего получается нагревом основного рабочего тела в реакторе (например, в газогенераторных тепловыделяющих элементах). Сопло, ТНА и многие другие агрегаты ЯРД аналогичны соответствующим элементам ЖРД. Принципиальное отличие ЯРД от ЖРД заключается в наличии ядерного реактора вместо камеры сгорания.

Запуск ЯРД длится 1-2 мин и начинается с пуска реактора. Эта операция занимает несколько десятков секунд; она ограничена по времени быстродействием системы регулирования реактора и допустимыми по термонапряжениям градиентами изменения температуры в элементах конструкции реактора. После прогрева реактора начинается подача рабочего тела и включается ТНА. На основном режиме система регулирования должна поддерживать предельно допустимую температуру рабочего тела для получения максимального удельного импульса. Изменение тяги производится, как и в ЖРД, изменением расхода рабочего тела.

Работающий реактор является мощным источником радиации - нейтронного и гамма-излучения, которое без принятия специальных мер может привести к недопустимому нагреву рабочего тела (в баках) и конструкции, охрупчиванию и разрушению материалов, нарушению электроизоляции, выходу из строя аппаратуры, полезного груза, лучевому поражению экипажа космического корабля (КК). Снижение потока радиации достигается установкой в реакторе, а также между ним и баком рабочего тела радиационных защитных экранов (защиты), выполняемых из комбинации различных металлов и их соединений (свинец, вольфрам, бор, кадмий, гидрид лития и др.). Т. к. в защитных экранах происходит значительное тепловыделение, то предусматривается их охлаждение (рабочим телом). Защита вместе с реактором составляет основную массу ЯРД . При уменьшении тяги ЯРД от нескольких МН до нескольких кН его удельная масса, с учётом защиты, увеличивается с единиц до десятков г/Н. На КК необходимо также предусматривать биологическую защиту кабины экипажа, которая может совмещаться с защитой от космической радиации. Защитные экраны заметно ухудшают массовые характеристики космического аппарата (КА).



1 - газовая турбина;
2 - выпускной патрубок;
3, 13 - блоки управления мощностью реактора;
4 - регулятор частоты вращения турбины;
5 - блок управления тягой;
6 - датчик давления газа на выходе из реактора;
7 - сопло;
8 - ядерный реактор;
9 - коллектор отбора газа на привод турбины;
10 - регулятор температуры газа для турбины;
11 - орган управления реактором;
12 - датчик температуры газа на выходе из реактора;
14 - главный клапан рабочего тела;
15 - насос;
16 - радиационный защитный экран;
17 - бак с рабочим телом

Реакторное излучение вызывает наведённую, т.е. искусственную радиоактивность конструкции. Она приводит к значительному остаточному тепловыделению в элементах реактора после выключения ЯРД , которое может длиться несколько часов или суток и вызывать расплавление частей реактора. Поэтому в ЯРД многократного включения предусматривается расхолаживание конструкции реактора (путём непрерывной или периодической прокачки рабочего тела) после каждого рабочего цикла. Для указанных ЯРД следует учитывать также возможность «отравления» реактора из-за накопления в его активной зоне радиоактивных продуктов распада (прежде всего ксенона), сильно поглощающих тепловые нейтроны. Содержание этих продуктов достигает максимума примерно через 10 ч после выключения ЯРД .

Хотя работающий ЯРД представляет опасность для обслуживающего персонала, через сутки после его выключения можно без всяких средств индивидуальной защиты находиться несколько десятков минут на расстоянии 50 м от ЯРД и даже подходить к нему. Простейшие средства защиты позволяют входить в рабочую зону ЯРД вскоре после испытаний. Уровень заражения стартовых комплексов и окружающей среды, по-видимому, при принятии необходимых мер не будет являться непреодолимым препятствием к использованию ЯРД на нижних ступенях РН. Проблема радиационной опасности в значительной степени смягчается тем обстоятельством, что водород - основное рабочее тело ЯРД - практически не активируется в реакторе, и поэтому реактивная струя ЯРД не более опасна, чем струя ЖРД.

Практические разработки твердофазных ЯРД , начатые в середине 50-х гг., привели к созданию в конце 60-х гг. стендовых образцов ЯРД с тягой несколько сотен кН. Их рабочим телом является водород - по той причине, что, как и в случае ЖРД, значение удельного импульса ЯРД обратно пропорционально квадратному корню из значения молекулярной массы рабочего тела перед реактивным соплом. Как и в ЖРД, значение удельного импульса ЯРД прямо пропорционально квадратному корню из значения температуры рабочего тела перед соплом. Энергия реакций деления позволяет в принципе нагреть рабочее тело в реакторе до температур, намного больших, чем существующие в камерах сгорания ЖРД. В твердофазном ЯРД , однако, можно получить температуру лишь ~ 3000 К, поскольку дальнейший нагрев рабочего тела ограничен прочностью тепловыделяющих элементов, температура которых на 200-300 К выше температуры рабочего тела (в ЖРД температура конструкции, наоборот, намного ниже, чем температура рабочего тела). Но и в этом случае удельный импульс ЯРД составляет ~ 9 км/с - вдвое больше, чем у лучших современных ЖРД.


Циклограмма работы ЯРД (Т и р - соответственно температура и давление рабочего тела на выходе из реактора):
А - пуск ЯРД (1-5 мин);
Б - основной режим работы (0,5-30 мин);
В - выключение (1-3 мин);
Г - охлаждение реактора (неск. ч - неск. сут);
1 - открытие главного клапана, подача рабочего тела и температурная стабилизация конструкции, пуск и разогрев реактора, раскрутка турбонасосного агрегата;
2 - набор тяги;
3 - выход ЯРД на режим конечной ступени;
4 - режим конечной ступени;
5 - выключение реактора;
6 - останов турбонасосного агрегата;
7 - начало управления тягой;
8 - окончание управления тягой


Изменение теоретического удельного импульса ЯРД для различных рабочих тел в зависимости от температуры их нагрева (давление на входе в сопло 10 МПа):
1 - водород;
2 - метан;
3 - аммиак;
4 - гидразин;
5 - этиловый спирт

Выгоды от использования ЯРД вместо ЖРД несколько снижаются из-за относительного возрастания массы конструкции КА, обусловленного наличием ядерного реактора, радиационной защиты и, наконец, массивного теплоизолированного бака для жидкого водорода (в кислородно-водородном топливе ЖРД этого продукта содержится лишь 14-18%). Число Циолковского для ракетных ступеней с кислородно-водородными ЖРД составляет 7-8, а с применением ЯРД снижается до 3-5. Тем не менее, использование ЯРД вместо ЖРД на верхних ступенях ракет-носителей позволило бы удвоить массу КА, доставляемых на поверхность Луны и посылаемых к Марсу, Юпитеру, Сатурну. Экспедиция на Марс, весьма проблематичная при использовании химических РД, становится осуществимой при оснащении КК твердофазными ЯРД . Такой КК должен иметь массу на околоземной орбите ~ 1000-1500 т, включая несколько разгонных ЯРД с тягой по 0,5-1 МН, удельным импульсом ~ 8200 м/с и временем работы 30-60 мин, тормозной ЯРД для вывода КК на орбиту Марса, разгонный ЯРД для возврата к Земле и марсианский экспедиционный КК с посадочным и взлётным ЖРД. Полёт рассчитан на срок 1,5-2 года.

В стадии научных и инженерных исследований - проблема создания газофазного ядерного ракетного двигателя (с реактором деления), в котором предполагается получить удельный импульс до 25 км/с и более. Пилотируемый КК с начальной массой на околоземной орбите в 2000 т, оснащённый газофазным ЯРД с тягой в 250 кН и удельным импульсом 50 км/с, смог бы совершить облёт Марса за 2 месяца; при этом ЯРД должен проработать около 100 ч. Менее перспективным по сравнению с газофазным представляется коллоидный ядерный ракетный двигатель , занимающий по своим характеристикам промежуточное положение между твердофазным и газофазным ЯРД . Нижний предел тяги упомянутых ЯРД ограничен, как правило, значением в несколько кН. Напротив, радиоизотопный ракетный двигатель относится к микродвигателям: в экспериментальных образцах получена максимальная тяга ~ 1 Н. Проблематичным представляется термоядерный ракетный двигатель . Импульсные ядерные ракетные двигатели , создающие тягу за счёт периодических ядерных взрывов, находятся в стадии инженерно-технической разработки. К гипотетическим ЯРД относятся некоторые виды фотонных ракетных двигателей и радиоизотопный парус .